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Introduction

• Today, we will discuss a different kind of sparsity arising from
structure among the features: rather than being grouped, we
will consider the case in which features are ordered

• Ordered situations arise in many situations, such as
spectroscopic data, temporal data, and spatial data; we will
discuss its application to genetics and copy number variation
later

• It can also be applied in situations where the features are not
naturally ordered, but could be ordered using, say, hierarchical
clustering (as could the group lasso)
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Fused lasso

• The fused lasso estimates β̂ are the values minimizing the
following objective function:

Q(β|X,y) = 1
2n‖y −Xβ‖22 + λ1‖β‖1 + λ2

−1∑
j=1

|βj − βj+1|

• Note that the penalty consists of two pieces:
◦ A lasso penalty that encourages βj = 0
◦ A fusion penalty that encourages βj to be equal to βj+1 and
βj−1
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Fused lasso signal approximator

• A special case of the fused lasso that we will concentrate on
today is the situation where X = I

• To make it clear which case we are dealing with, I will use θ̂
to denote the solutions to this problem of minimizing

Q(β|y) = 1
2‖y − θ‖22 + λ1‖θ‖1 + λ2

n−1∑
j=1

|θj − θj+1|

• This version of the problem is sometimes called the “fused
lasso signal approximator”, in the sense that it amounts to
approximating a one-dimensional signal with a series of zeroes
and piecewise constant functions
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Coordinate descent: Unsuitable?

• Solving this optimization problem, however, introduces some
new challenges that we have not yet encountered

• Recall the two basic conditions necessary for coordinate
descent algorithms to converge
◦ A differentiable loss function (this was violated in

LAD/quantile regression)
◦ A separable penalty function (this is violated in the fused lasso)

• As we will see, coordinate descent does not work well at all for
solving the fused lasso problem; new tools are needed
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Toy data

• To get a better sense of what’s going on, let’s consider a toy
data set: y = {0, 0, 0, 1, 1, 1, 0, 0, 0}
• For the purposes of illustration, let λ1 = 0 and λ2 = 1/2

• We can see that Q(y) = 1, while Q(0) = 1.5, so
Q(y) < Q(0)

• Nevertheless, if we start at the initial value θ = 0, the
coordinate descent algorithm can never escape zero

• By only considering one-coordinate-at-a-time transitions, the
CD algorithm misses the fact that we could simultaneously
move {θ4, θ5, θ6} and obtain a better solution
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ADMM: Introduction

• There are a variety of alternative algorithms we could use
here, but this is a good opportunity to discuss a flexible and
useful algorithm called the alternating direction method of
multipliers, or ADMM, algorithm

• As we will see, ADMM algorithms converge for a wider range
of problems than CD; in addition (although we won’t focus on
this today), they lend themselves to parallelization in a way
that CD algorithms do not, which has led to a considerable
amount of recent interest in them

• The essence of the ADMM algorithm is that we will introduce
new variables {δj = θj − θj+1}n−1

j=1 and alternate between
updating θ, updating δ, and reconciling their differences
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Reframing the problem (λ1 = 0 for simplicity)

Specifically, let us reframe the problem as: minimize

1
2‖y − θ‖22 + λ‖δ‖1

subject to the constraint

Dθ = δ,

where D is the (n− 1)× n matrix of first-order differences:

D =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
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The augmented Lagrangian

• In general, Lagrange multipliers are a useful way of solving
optimization problems with constraints

• The ADMM algorithm uses a modification of this approach in
order to achieve greater robustness; we will minimize the
augmented Lagrangian

1
2‖y − θ‖22 + λ‖δ‖1 + ρ

2‖Dθ − δ + u‖22 −
ρ
2‖u‖

2
2,

where u are the (scaled) Lagrange multipliers (also known as
dual variables)

• The algorithm thus consists of alternately updating θ, δ, and
u, all of which have simple, closed forms
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ADMM updates

• Proposition: Given δ and u from iteration k, the value of θ
that minimizes the augmented Lagrangian for iteration k+1 is

θ = (ρD>D + I)−1[y + ρD>(δ − u)]

• Proposition: Given θ from iteration k + 1 and u from
iteration k, the value of δ that minimizes the augmented
Lagrangian for iteration k + 1 is

δ = 1
ρS (ρ(Dθ + u), λ)

• To update u, on the other hand, we apply an update with
step size ρ:

uk+1 = uk + ρ(Dθk+1 − δk+1)
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ADMM convergence for the toy data
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Remarks

• Recall that Q(0) = 1.5 and Q(y) = 1; we now have
Q(θ̂) = 0.75

• In other words, the decoupling between θ and δ introduced by
the ADMM prevented the algorithm from being stuck at 0
and allowed us to reach the global minimum

• The step size ρ affects convergence (for the toy data, I used
ρ = 0.5):
◦ ρ too small and θ, δ remain uncoupled
◦ ρ too large and θ, δ too coupled; don’t have the flexibility to

reach optimal solution
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Path algorithms

• ADMM is a very flexible framework worth knowing about

• In the specific context of the FLSA, however, there are also a
variety of exact solutions that can be calculated using an
algorithm somewhat analogous to the LARS algorithm for the
regular lasso

• The fast solver provided by the R package flsa (which we
will use in the case study coming up) uses one of these
algorithms, not ADMM

• These exact algorithms tend to be quite a bit faster for small
problems; for larger problems, and for going outside the FLSA
framework, ADMM is often better
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Copy number variation

• Broadly speaking, humans have two copies of their genome

• Occasionally however, a region of the genome is duplicated or
destroyed; this is known as copy number variation (CNV) and
it occurs in all humans

• Copy number variation tends to be more extreme in cancer,
however: gains or losses of large regions of the genome often
trigger uncontrolled cell growth

• There are a variety of methods for measuring copy number
variation in a genome-wide fashion; the data we will look at
today comes from a method known as comparative genomic
hybridization (CGH)
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glioma data

• The data we will look at today is a popular benchmark in the
field

• It consists of CGH data from two glioblastoma tumors
(chromosome 7 in one patient, chromosome 13 in another)
spliced together in order to create a challenging data set for
CNV detection:
◦ Both gains and losses are present
◦ The copy number changes occur over both short and large

scales

• CGH data is typically reported on the log2 ratio scale, so that
0 means 2 copies (i.e., a normal number of copies),
log2(3/2) = 1 means a gain of a copy, and log2(1/2) = −1
means the loss of a copy
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The flsa package

• There are a variety of packages that solve the general fused
lasso problem; at the moment, none stand out (to me, at
least) as the best one

• For the signal approximator special case, however, there is a
nice package called flsa that works quite well

• It’s basic usage is

flsa(y, lambda1=0, lambda2=1/2)

• Often, however, it is best to fit the whole path with

fit <- flsa(y)

followed by

flsaGetSolution(fit, lambda1=0.1, lambda2=1/2)
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Fused lasso solution
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Two-dimensional fused lasso

• The fused lasso, as we have presented it, accounts for
one-dimensional ordering

• Of course, two-dimensional ordering is also common: spatial
statistics, images

• Consider, then, the two-dimensional fused lasso (which we
present here in signal approximator form):

Q(β) = 1
2‖Y −Θ‖2F + λ

∑
i,j

(|θi,j − θi+1,j |+ |θi,j − θi,j+1|) ,

where ‖A‖F is the Frobenius norm: ‖A‖F =
√∑

i,j a
2
ij
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Image de-noising

• A major application of the two-dimensional fused lasso is in
image processing

• The idea here is that there exists a “true” image, but we only
see a noisy image, from which we would like to recover the
true image

• In this context, the two-dimensional fused lasso is known as
total variation de-noising; this idea predates the fused lasso,
although recent advances in convex optimization have led to
better algorithms
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Fused lasso solution
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Encouraging monotone solutions

• One final extension of the fused lasso: let us consider the
following very simple modification, replacing the absolute
value in the penalty with the positive part (·)+:

Q(β|X,y) = 1
2‖y − θ‖22 + λ

n−1∑
j=1

(θj − θj+1)+

• In other words, increasing values of θ are not penalized at all,
but decreasing values are penalized as in the fused lasso

• Such a method might be useful in fitting a line to data in
situations where we expect a monotone relationship
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Isotonic regression

• This problem (fitting a monotone line to data) has a long
history in statistics dating back to the 1950s, and is known as
isotonic regression

• The modification of the fused lasso introduced on the previous
slide is one way to solve this problem: by setting λ large
enough, we can force the solution to be monotone

• However, by merely encouraging monotonicity rather than
requiring it, we can also accomplish something new; this idea
is known as nearly isotonic regression, and is implemented in
the R package neariso
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Nearly isotonic regression: Global warming
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