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Where we’re at and where we’re going

• At this point, we’ve covered the most widely used approaches
to fitting penalized regression models in the standard setting

• The remainder of the course will focus on:
◦ Inference for β
◦ Other models, such as logistic regression and Cox regression
◦ Other covariate structures, such as grouping and fusion

• We’ll begin with inference
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Inferential questions

• Up until this point, our inference has been restricted to the
predictive ability of the model (which we can obtain via
cross-validation)

• This is useful, of course, but we would also like to be able to
ask the questions:
◦ How reliable are the selections made by the model? What is its

false discovery rate?
◦ How accurate are the estimates yielded by the model? Can we

obtain confidence intervals for β? Even for βj not selected by
the model?
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Overview

• As I’ve remarked previously, little progress was made on these
questions until relatively recently, and the field is still very
much unsettled as far as a consensus on how to proceed with
inference

• Broadly speaking, I would classify the proposed approaches
into five major categories:
◦ Marginal approaches
◦ Debiasing
◦ Sample splitting/resampling
◦ Selective inference
◦ Knockoff filter
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Setup

• For all of these methods, we will describe the idea behind how
they work and then analyze the same set of simulated data for
the sake of comparison

• Simulation setup:

A

Y

B

N

• The hdrm package has a function called genDataABN() to
simulate data of this type
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Example data

Our example data set for the next several lectures:

• n = 100, p = 60, σ2 = 1

• Six variables with βj 6= 0 (category “A”):
◦ Two variables with βj = ±1:
◦ Four variables with βj = ±0.5:

• Each of the six variables with βj 6= 0 is correlated (ρ = 0.5)
with two other variables; i.e., there are 12 “Type B” features

• The remaining 42 variables are pure noise, βj = 0 and
independent of all other variables (“Type N”)

genDataABN(n=100, p=60, a=6, b=2, rho=0.5,

beta=c(1,-1,0.5,-0.5,0.5,-0.5))
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Motivation
Performance
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KKT conditions

• Recall the KKT conditions for the lasso:

1

n
x′jr = λ sign(β̂j) for all β̂j 6= 0

1

n

∣∣x′jr∣∣ ≤ λ for all β̂j = 0

• Letting rj = y −X−jβ̂−j denote the partial residual with
respect to feature j, this implies that

1

n

∣∣x′jrj∣∣ > λ for all β̂j 6= 0

1

n

∣∣x′jrj∣∣ ≤ λ for all β̂j = 0;

similar equations apply for MCP, SCAD, elastic net, etc.
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Selection probabilities

• Therefore, the probability that variable j is selected is

P
(

1

n

∣∣x′jrj∣∣ > λ

)
• This suggests that if we are able to characterize the

distribution of 1
nx
′
jrj under the null, we can estimate the

number of false selections in the model

• Indeed, this is easy to do in the case of orthonormal design:

E
∣∣∣Ŝ ∩ N ∣∣∣ = 2 |N |Φ(−λ

√
n/σ),

where Ŝ is the set of selected variables and N is the set of
null variables
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Estimation

• To use this as an estimate, two unknown quantities must be
estimated (this should seem familiar):
◦ |N | can be replaced by p, using the total number of variables

as an upper bound for the null variables

◦ σ2 can be estimated by rT r/(n−
∣∣∣Ŝ∣∣∣)

• This implies the following estimate for the expected number
of false discoveries:

F̂D = 2pΦ(−
√
nλ/σ̂)

and this to estimate of the false discovery rate:

F̂DR =
F̂D∣∣∣Ŝ∣∣∣
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Local false discovery rates

• Letting

zj =
1
nx

T
j rj

σ̂
√
n
,

we therefore have zj
.∼ N(0, 1)

• We could therefore use this set of z-statistics to estimate
feature-specific local false discovery rates as well

• Note that in this approach, we are not restricted to variables
in the model; zj can be calculated for all p features

• This is all assuming an orthonormal design; what about in the
general case?
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General case

• In the non-orthogonal case,

1

n
xT
j rj = β∗j +

1

n
xT
j ε+

1

n
xT
j X−j(β

∗
−j − β̂−j)

• Broadly speaking, the general idea here is that:
◦ For variables like B, the remainder term is not negligible
◦ For variables like N, however, the remainder term is negligible,

at least under certain conditions

• For this reason, I named these marginal false discovery rates,
as it only establishes FDR control for variables marginally
independent of the outcome (Xj ⊥⊥ Y ), as opposed to
conditional approaches that are concerned with conditional
independence: Xj ⊥⊥ Y |{Xk}k 6=j
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Remarks

Focusing on marginal false discoveries has a few advantages:

• Allows straightforward, efficient estimation of the marginal
false discovery rate (mFdr)

• Much more powerful: When two variables are correlated,
distinguishing between which of them (or none, or both) is
driving changes in Y and which is merely correlated with Y is
challenging – even more so in high dimensions

• In many applications, discovering variables like B is not
problematic
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Theoretical support

• The design matrix does not have to be strictly orthogonal in
order for the proposed estimator to work; let A,N partition
{1, 2, . . . , p} such that βj = 0 for all j ∈ N and the following
condition holds:

lim
n→∞

1

n
X′X =

[
ΣA 0
0 ΣN

]
• Theorem: Suppose 1

nX
T
NXN → ΣN = I. Then for any

j ∈ N and for λn such that the sequence
√
nλn is bounded,

1√
n
x′jrj

d−→ N(0, σ2)
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mFdr accuracy
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mFdr accuracy (cont’d)

0.0

0.2

0.4

0.6

−6−4−20

log(λ)

m
F

dr Estimate

True

Patrick Breheny University of Iowa High-Dimensional Data Analysis (BIOS 7240) 15 / 27



Inference: Overview
Marginal false discovery rates

Motivation
Performance
Case studies

Correlated noise

• The preceding results are something of a “best case scenario”
for the proposed method, since the variables in N were
independent

• When the null variables are dependent, the estimator becomes
conservative

• The reason for this is that if features are correlated, regression
methods such as the lasso will tend to select a single feature
and then become less likely to select other correlated features;
our calculations do not account for this phenomenon
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mFdr accuracy: Highly correlated noise
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mFdr accuracy: Highly correlated noise (cont’d)
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Comparison

• Being able to estimate mFdr gives us another way of choosing
λ: we can choose the smallest value of λ such that
mFdr(λ) < α

• For our example data set (uncorrelated noise; FDR methods
with a nominal FDR of 10%):

# Selected
A B N

Lasso (mFDR) 6 1 1
Univariate 6 5 1
Lasso (CV) 6 2 3
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Comparison (simulation)

A more extensive comparison based on averaging across many
simulated data sets:

LassoCV
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LassoFDR
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Remarks

• Cross-validation gives no control over the number of noise
variables selected (and indeed, tends to select a lot of them)

• Univariate approaches give no control over the number of
“Type B” variables selected (and also, tend to select a lot of
them)

• Using lasso with mFdr control
◦ Controls the number of noise variables selected
◦ Doesn’t necessarily control the number of “Type B” variables

selected, but tends not to select many of them (because it’s
fundamentally a regression-based approach)
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Tension between selection and prediction

• As we saw in our theory lectures, there tends to be a tension
between variable selection and prediction, at least for the
lasso: values of λ that are optimal for prediction let in too
many false positives

• Conversely, if we select λ so as to limit the number of false
positives, the resulting model has quite a bit of bias –
prediction and estimation suffer

• By providing feature-specific inference, local false discovery
rates alleviate this tension: we can select the optimal
predictive model, but still have a way of quantifying which
features are likely to be false discoveries
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Local mfdr

0.00

0.25

0.50

0.75

1.00

0.000.250.500.75

λ

m
fd

r

Patrick Breheny University of Iowa High-Dimensional Data Analysis (BIOS 7240) 23 / 27



Inference: Overview
Marginal false discovery rates

Motivation
Performance
Case studies

summary

> summary(fit, lambda=cvfit$lambda.min)

-------------------------------------------------

Expected nonzero coefficients: 1.13

Average mfdr (8 features) : 0.142

Estimate z mfdr

A2 -0.7167 -9.320 < 1e-04

A1 0.7228 8.970 < 1e-04

A6 -0.3045 -4.925 < 1e-04

A3 0.2730 4.357 0.00077842

B10 0.2406 4.022 0.00318218

A4 -0.2216 -3.693 0.01532035

A5 0.1378 3.102 0.11479490

B2 0.0012 1.661 1.00000000
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Breast cancer data (n = 536, p = 17, 322)

mfdr(fit)

plot(mfdr(fit))
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We can select quite a few variables (≈ 50) with a low mFdr
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SOPHIA (n = 292, p = 705, 969)

A GWAS example
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No features can be selected with any confidence that they are not
false inclusions
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Conclusions

• Marginal false discovery rates are a useful tool for assessing
the reliability of variable selection in penalized regression
models

• The simplicity of the estimator makes it (a) available at
minimal added computational cost and (b) very easy to
generalize to new methods

• Some issues to be aware of, though:
◦ Only controls FDR in the marginal sense (i.e., not for all
βj = 0)

◦ Becomes conservative when noise features are highly correlated

• Local false discovery rates provide a way to select
prediction-optimal models without worrying about the number
of false selections
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