Theoretical results: Non-asymptotic

Patrick Breheny

April 1

Patrick Breheny

University of Iowa High-Dimensional Data Analysis (BIOS 7240)

Introduction

- Last time we derived results from a classical perspective in which β^* was fixed as $n\to\infty$
- Today, we will consider things from a non-asymptotic perspective, obtaining bounds on estimation and prediction error while allowing p>n
- Although results along these lines can be shown for other penalized regression estimators as well, today's lecture will focus entirely on the lasso

A preliminary lemma

- We'll begin by discussing prediction, as we can prove results here without requiring any additional conditions
- First, let us prove the following lemma, from which several of our later results will derive
- Lemma: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^T \boldsymbol{\varepsilon} \|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le \lambda \|\boldsymbol{\delta}\|_1 + 2\lambda \|\boldsymbol{\beta}^*\|_1 - 2\lambda \|\boldsymbol{\delta} + \boldsymbol{\beta}^*\|_1,$$

where $oldsymbol{\delta} = \widehat{oldsymbol{eta}} - oldsymbol{eta}^*$

Prediction bound

- Based on this lemma, we have
- Theorem: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^T \boldsymbol{\varepsilon} \|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 4\lambda \|\boldsymbol{\beta}^*\|_1$$

• Corollary: If $\lambda = 2\sigma \sqrt{c \log(p)/n}$ and $\mathbf{y} = \mathbf{X} \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} N(0, \sigma^2)$, then the lasso prediction error satisfies

$$\frac{1}{n} \| \mathbf{X} \widehat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}^* \|_2^2 \le 8\sigma \| \boldsymbol{\beta}^* \|_1 \sqrt{\frac{c \log p}{n}}$$

with probability at least $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

- The prediction error increases with noise and dimension, and decreases with sample size these dependencies are intuitive
- The dependence on ||β*|| is less obvious; it is worth noting, however, that up until this point, we have assumed nothing about β* (or about X)
- This prediction result differs from our previous results: previously, we had shown that prediction error was ${\cal O}(n^{-1})$, whereas this result is ${\cal O}(n^{-1/2})$

Convexity conditions Estimation bound Prediction bound revisited

Eigenvalue conditions

- In the previous lecture, we introduced an eigenvalue condition: namely, that $\mathbf{X}^T \mathbf{X}/n \rightarrow \mathbf{\Sigma}$, with the minimum eigenvalue of $\mathbf{\Sigma}$ bounded above 0
- Why is this important?
- We're finding the value $\widehat{\beta}$ that minimizes $Q(\beta)$; but even if we can guarantee that $Q(\widehat{\beta}) \approx Q(\beta^*)$, if the function is flat, we have no guarantee that $\widehat{\beta}$ is close to β^*
- If p > n, however, it is clear that this condition can never be met

Prediction Estimation Selection Convexity conditions Estimation bound Prediction bound rev

Restricting our eigenvalue conditions

• In other words, our previous condition was:

$$\frac{\frac{1}{n}\boldsymbol{\delta}^T\mathbf{X}^T\mathbf{X}\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_2^2}$$

for all $\boldsymbol{\delta} \in \mathbb{R}^p$

- However, what if this condition didn't have to be met for all $\delta \in \mathbb{R}^p$, but only for some $\delta \in \mathbb{R}^p$?
- For example, what if we only had to satisfy the condition for $\delta \in \mathbb{R}^{\mathcal{S}}$?

Convexity conditions Estimation bound Prediction bound revisited

A cone condition

- This is a step in the right direction, but not nearly strong enough: for example, suppose a variable in \mathcal{N} was perfectly correlated with a variable in \mathcal{S}
- We will definitely need to involve N in our condition as well, but how to do so without running into dimensionality problems?
- The key here is to require the eigenvalue condition for only those δ vectors that fall mostly, or at least partially, in the direction of β^*
- Theorem: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^T \boldsymbol{\varepsilon} \|_{\infty}$, then

 $\|\boldsymbol{\delta}_{\mathcal{N}}\|_{1} \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_{1}$

 Prediction
 Convexity conditions

 Estimation
 Estimation bound

 Selection
 Prediction bound revis

Examples

• For example, suppose $\mathbf{X}^T \mathbf{X}/n$ looks like this:

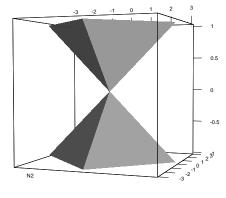
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- We are in trouble if ${\mathcal S}$ contains either feature 2 or feature 3
- However, if $\mathcal{S}=\{1\}$ then there are no flat directions that lie within the lasso cones
- Second example: Suppose $S = \{1\}$ and $\mathbf{x}_1 = \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4$; then $L(\boldsymbol{\beta})$ would be perfectly flat in the direction $\boldsymbol{\delta} = (1, -1, -1, -1)$, with $\|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$ satisfied – this kind of \mathbf{X} must be ruled out also

Convexity conditions Estimation bound Prediction bound revisited

Illustration

s



N1

Prediction Estimation Selection Convexity conditions Estimation bound Prediction bound revisit

Restricted eigenvalue condition

• Let us now formally state the *restricted eigenvalue condition*, which I will denote $RE(\tau)$: There exists a constant $\tau > 0$ such that

$$\frac{\frac{1}{n}\boldsymbol{\delta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_2^2} \geq \tau$$

for all nonzero $\boldsymbol{\delta}: \|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$

 Note: This condition is specific to linear regression; the general condition is known as *restricted strong convexity* and would consist of replacing X^TX/n with ∇L(β)

Convexity conditions Estimation bound Prediction bound revisited

Other conditions

This is certainly not the only condition that people have used to prove things in the high-dimensional setting; other similar conditions include

- Irrepresentable condition
- Restricted isometry property (RIP)
- Compatibility condition
- Coherence condition
- Sparse Riesz condition

All of these conditions require that $\mathbf{X}_{\mathcal{S}}$ is full rank as well as placing some sort of restriction on Σ and how strongly features in \mathcal{S} can be correlated with features in \mathcal{N}

PredictionConvexity conditionsEstimationEstimation boundSelectionPrediction bound revisit

Estimation consistency

- With this condition in place, we're ready to prove the following theorem
- Theorem: Suppose X satisfies $\mathsf{RE}(\tau)$ and $\lambda \geq \frac{2}{n} \|\mathbf{X}^T \boldsymbol{\varepsilon}\|_{\infty}$; then

$$\|\widehat{\boldsymbol{eta}} - \boldsymbol{eta}^*\|_2 \leq rac{3}{ au}\lambda\sqrt{|\mathcal{S}|}$$

• Corollary: Suppose X satisfies $\mathsf{RE}(\tau)$, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \le \frac{6\sigma}{\tau} \sqrt{\frac{c \,|\mathcal{S}|\log p}{n}}$$

with probability $1 - 2\exp\{-\frac{1}{2}(c-2)\log p\}$

Convexity conditions Estimation bound Prediction bound revisited

- This rate makes a lot of sense:
 - The error of the oracle estimator is on the order $\sigma\sqrt{|\mathcal{S}|/n}$: no method can estimate \mathcal{S} parameters based on n observations at a better rate than this
 - $\circ~$ The $\log p$ term is the price we pay to search over p features in order to discover the sparse set ${\mathcal S}$
- Note also the dependence on the eigenvalue parameter τ; in particular, if the minimum eigenvalue is close to 0, the estimate rate will suffer significantly

Estimation	
	Prediction bound revisited

Another look at prediction error

- Now that we've made some assumptions about X and β^{*}, does this affect our prediction accuracy?
- Theorem: Suppose X satisfies $\mathsf{RE}(\tau)$ and $\lambda \geq \frac{2}{n} \|\mathbf{X}^T \boldsymbol{\varepsilon}\|_{\infty}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le \frac{9}{\tau} \lambda^2 |\mathcal{S}|$$

• Corollary: Suppose X satisfies $\mathsf{RE}(\tau)$, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 36c \frac{\sigma^2}{\tau} \frac{|\mathcal{S}|\log p}{n}$$

with probability $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

Prediction Convexity conditions Estimation Estimation bound Selection Prediction bound revisited

- We have now derived two results concerning the prediction error of the lasso:
 - $\circ~$ No assumptions on ${\bf X}$ or ${\boldsymbol \beta}^*:~{\rm MSPE}=O(n^{-1/2}),$ the "slow rate"
 - β^* sparse, X satisfies RE(τ): MSPE = $O(n^{-1})$, the "fast rate"
- Further theoretical work has shown that these bounds are in fact tight: no method can achieve the fast rate without additional assumptions

Irrepresentable condition

- Finally, we'll take a look at the selection consistency of the lasso in high dimensions, although we're not going to have time to prove our result in class
- We begin by noting that our restricted eigenvalue condition is not enough to establish selection consistency; we need something stronger
- The feature matrix X satisfies the *irrepresentable condition*, which I will denote IR(τ), if there exists a constant τ > 0 such that

$$\|(\mathbf{X}_{\mathcal{S}}^{T}\mathbf{X}_{\mathcal{S}})^{-1}\mathbf{X}_{\mathcal{S}}^{T}\mathbf{X}_{\mathcal{N}}\|_{\infty} \leq 1 - \tau$$

- Note that for all $j \in \mathcal{N}$, the irrepresentable condition places a bound on $(\mathbf{X}_{\mathcal{S}}^T \mathbf{X}_{\mathcal{S}})^{-1} \mathbf{X}_{\mathcal{S}}^T \mathbf{x}_j$, the coefficient for regressing \mathbf{x}_j on the features in \mathcal{S}
- In words, this is saying no noise feature can be highly "represented" by the true signal features; if this were the case, we might select the noise feature instead of the true signal
- Note that the IR(τ) condition requires $\Sigma_{\mathcal{S}}$ to be invertible; let ξ_* denote the minimum eigenvalue of $\frac{1}{n} \mathbf{X}_{\mathcal{S}}^T \mathbf{X}_{\mathcal{S}}$

Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that **X** satisfies $IR(\tau)$ and $\mathbf{y} = \mathbf{X}\beta^* + \epsilon$ with $\varepsilon_i \stackrel{\mu}{\sim} N(0, \sigma^2)$; let

$$\begin{aligned} \lambda &= \frac{8\sigma}{\tau} \sqrt{\frac{\log p}{n}} \\ B &= \lambda \left(\frac{4\sigma}{\sqrt{\xi_*}} + \| \mathbf{\Sigma}_{\mathcal{S}}^{-1} \|_{\infty} \right) \end{aligned}$$

Then with probability at least $1 - c_1 \exp\{-c_2 n \lambda^2\}$, the lasso solution $\hat{\beta}$ has the following properties:

Selection consistency theorem (Wainwright, 2009) (cont'd)

- Uniqueness: $\widehat{oldsymbol{eta}}$ is unique
- Estimation error bound: $\|\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}^*\|_{\infty} \leq B$
- No false inclusions: $\hat{S} \subseteq S$
- No false exclusions: \hat{S} includes all indices j such that $|\beta_j^*| > B$ and is therefore selection consistent provided that all elements of β_S^* are at least that large