# Theoretical results: Non-asymptotic 

Patrick Breheny

April 1

## Introduction

- Last time we derived results from a classical perspective in which $\boldsymbol{\beta}^{*}$ was fixed as $n \rightarrow \infty$
- Today, we will consider things from a non-asymptotic perspective, obtaining bounds on estimation and prediction error while allowing $p>n$
- Although results along these lines can be shown for other penalized regression estimators as well, today's lecture will focus entirely on the lasso


## A preliminary lemma

- We'll begin by discussing prediction, as we can prove results here without requiring any additional conditions
- First, let us prove the following lemma, from which several of our later results will derive
- Lemma: If $\lambda \geq \frac{2}{n}\left\|\mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$, then the lasso prediction error satisfies

$$
\frac{1}{n}\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2} \leq \lambda\|\boldsymbol{\delta}\|_{1}+2 \lambda\left\|\boldsymbol{\beta}^{*}\right\|_{1}-2 \lambda\left\|\boldsymbol{\delta}+\boldsymbol{\beta}^{*}\right\|_{1}
$$

where $\boldsymbol{\delta}=\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}$

## Prediction bound

- Based on this lemma, we have
- Theorem: If $\lambda \geq \frac{2}{n}\left\|\mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$, then the lasso prediction error satisfies

$$
\frac{1}{n}\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2} \leq 4 \lambda\left\|\boldsymbol{\beta}^{*}\right\|_{1}
$$

- Corollary: If $\lambda=2 \sigma \sqrt{c \log (p) / n}$ and $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}^{*}+\boldsymbol{\varepsilon}$ with $\varepsilon_{i} \stackrel{\Perp}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$, then the lasso prediction error satisfies

$$
\frac{1}{n}\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2} \leq 8 \sigma\left\|\boldsymbol{\beta}^{*}\right\|_{1} \sqrt{\frac{c \log p}{n}}
$$

with probability at least $1-2 \exp \left\{-\frac{1}{2}(c-2) \log p\right\}$

## Remarks

- The prediction error increases with noise and dimension, and decreases with sample size - these dependencies are intuitive
- The dependence on $\left\|\boldsymbol{\beta}^{*}\right\|$ is less obvious; it is worth noting, however, that up until this point, we have assumed nothing about $\boldsymbol{\beta}^{*}$ (or about X)
- This prediction result differs from our previous results: previously, we had shown that prediction error was $O\left(n^{-1}\right)$, whereas this result is $O\left(n^{-1 / 2}\right)$


## Eigenvalue conditions

- In the previous lecture, we introduced an eigenvalue condition: namely, that $\mathbf{X}^{T} \mathbf{X} / n \rightarrow \boldsymbol{\Sigma}$, with the minimum eigenvalue of $\boldsymbol{\Sigma}$ bounded above 0
- Why is this important?
- We're finding the value $\widehat{\boldsymbol{\beta}}$ that minimizes $Q(\boldsymbol{\beta})$; but even if we can guarantee that $Q(\widehat{\boldsymbol{\beta}}) \approx Q\left(\boldsymbol{\beta}^{*}\right)$, if the function is flat, we have no guarantee that $\widehat{\boldsymbol{\beta}}$ is close to $\boldsymbol{\beta}^{*}$
- If $p>n$, however, it is clear that this condition can never be met


## Restricting our eigenvalue conditions

- In other words, our previous condition was:

$$
\frac{\frac{1}{n} \boldsymbol{\delta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}^{2}}
$$

for all $\boldsymbol{\delta} \in \mathbb{R}^{p}$

- However, what if this condition didn't have to be met for all $\boldsymbol{\delta} \in \mathbb{R}^{p}$, but only for some $\boldsymbol{\delta} \in \mathbb{R}^{p}$ ?
- For example, what if we only had to satisfy the condition for $\delta \in \mathbb{R}^{\mathcal{S}}$ ?


## A cone condition

- This is a step in the right direction, but not nearly strong enough: for example, suppose a variable in $\mathcal{N}$ was perfectly correlated with a variable in $\mathcal{S}$
- We will definitely need to involve $\mathcal{N}$ in our condition as well, but how to do so without running into dimensionality problems?
- The key here is to require the eigenvalue condition for only those $\boldsymbol{\delta}$ vectors that fall mostly, or at least partially, in the direction of $\boldsymbol{\beta}^{*}$
- Theorem: If $\lambda \geq \frac{2}{n}\left\|\mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$, then

$$
\left\|\boldsymbol{\delta}_{\mathcal{N}}\right\|_{1} \leq 3\left\|\boldsymbol{\delta}_{\mathcal{S}}\right\|_{1}
$$

## Examples

- For example, suppose $\mathbf{X}^{T} \mathbf{X} / n$ looks like this:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

- We are in trouble if $\mathcal{S}$ contains either feature 2 or feature 3
- However, if $\mathcal{S}=\{1\}$ then there are no flat directions that lie within the lasso cones
- Second example: Suppose $\mathcal{S}=\{1\}$ and $\mathbf{x}_{1}=\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{4}$; then $L(\boldsymbol{\beta})$ would be perfectly flat in the direction $\boldsymbol{\delta}=(1,-1,-1,-1)$, with $\left\|\boldsymbol{\delta}_{\mathcal{N}}\right\|_{1} \leq 3\left\|\boldsymbol{\delta}_{\mathcal{S}}\right\|_{1}$ satisfied - this kind of $\mathbf{X}$ must be ruled out also


## Illustration



N1

## Restricted eigenvalue condition

- Let us now formally state the restricted eigenvalue condition, which I will denote $\operatorname{RE}(\tau)$ : There exists a constant $\tau>0$ such that

$$
\frac{\frac{1}{n} \boldsymbol{\delta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}^{2}} \geq \tau
$$

for all nonzero $\boldsymbol{\delta}:\left\|\boldsymbol{\delta}_{\mathcal{N}}\right\|_{1} \leq 3\left\|\boldsymbol{\delta}_{\mathcal{S}}\right\|_{1}$

- Note: This condition is specific to linear regression; the general condition is known as restricted strong convexity and would consist of replacing $\mathbf{X}^{T} \mathbf{X} / n$ with $\nabla L(\boldsymbol{\beta})$


## Other conditions

This is certainly not the only condition that people have used to prove things in the high-dimensional setting; other similar conditions include

- Irrepresentable condition
- Restricted isometry property (RIP)
- Compatibility condition
- Coherence condition
- Sparse Riesz condition

All of these conditions require that $\mathbf{X}_{\mathcal{S}}$ is full rank as well as placing some sort of restriction on $\boldsymbol{\Sigma}$ and how strongly features in $\mathcal{S}$ can be correlated with features in $\mathcal{N}$

## Estimation consistency

- With this condition in place, we're ready to prove the following theorem
- Theorem: Suppose $\mathbf{X}$ satisfies $\operatorname{RE}(\tau)$ and $\lambda \geq \frac{2}{n}\left\|\mathbf{X}^{T} \boldsymbol{\varepsilon}\right\|_{\infty}$; then

$$
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2} \leq \frac{3}{\tau} \lambda \sqrt{|\mathcal{S}|}
$$

- Corollary: Suppose $\mathbf{X}$ satisfies $\operatorname{RE}(\tau), \mathbf{y}=\mathbf{X} \boldsymbol{\beta}^{*}+\varepsilon$ with $\varepsilon_{i} \stackrel{\Perp}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$, and $\lambda=2 \sigma \sqrt{c \log (p) / n}$; then

$$
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2} \leq \frac{6 \sigma}{\tau} \sqrt{\frac{c|\mathcal{S}| \log p}{n}}
$$

with probability $1-2 \exp \left\{-\frac{1}{2}(c-2) \log p\right\}$

## Remarks

- This rate makes a lot of sense:
- The error of the oracle estimator is on the order $\sigma \sqrt{|\mathcal{S}| / n}$ : no method can estimate $\mathcal{S}$ parameters based on $n$ observations at a better rate than this
- The $\log p$ term is the price we pay to search over $p$ features in order to discover the sparse set $\mathcal{S}$
- Note also the dependence on the eigenvalue parameter $\tau$; in particular, if the minimum eigenvalue is close to 0 , the estimate rate will suffer significantly


## Another look at prediction error

- Now that we've made some assumptions about $\mathbf{X}$ and $\boldsymbol{\beta}^{*}$, does this affect our prediction accuracy?
- Theorem: Suppose $\mathbf{X}$ satisfies $\operatorname{RE}(\tau)$ and $\lambda \geq \frac{2}{n}\left\|\mathbf{X}^{T} \varepsilon\right\|_{\infty}$; then

$$
\frac{1}{n}\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2} \leq \frac{9}{\tau} \lambda^{2}|\mathcal{S}|
$$

- Corollary: Suppose $\mathbf{X}$ satisfies $\operatorname{RE}(\tau), \mathbf{y}=\mathbf{X} \boldsymbol{\beta}^{*}+\varepsilon$ with $\varepsilon_{i} \stackrel{\Perp}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$, and $\lambda=2 \sigma \sqrt{c \log (p) / n}$; then

$$
\frac{1}{n}\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}^{*}\right\|_{2}^{2} \leq 36 c \frac{\sigma^{2}}{\tau} \frac{|\mathcal{S}| \log p}{n}
$$

with probability $1-2 \exp \left\{-\frac{1}{2}(c-2) \log p\right\}$

## Remarks

- We have now derived two results concerning the prediction error of the lasso:
- No assumptions on $\mathbf{X}$ or $\boldsymbol{\beta}^{*}: \mathrm{MSPE}=O\left(n^{-1 / 2}\right)$, the "slow rate"
- $\boldsymbol{\beta}^{*}$ sparse, $\mathbf{X}$ satisfies $\operatorname{RE}(\tau)$ : $\operatorname{MSPE}=O\left(n^{-1}\right)$, the "fast rate"
- Further theoretical work has shown that these bounds are in fact tight: no method can achieve the fast rate without additional assumptions


## Irrepresentable condition

- Finally, we'll take a look at the selection consistency of the lasso in high dimensions, although we're not going to have time to prove our result in class
- We begin by noting that our restricted eigenvalue condition is not enough to establish selection consistency; we need something stronger
- The feature matrix $\mathbf{X}$ satisfies the irrepresentable condition, which I will denote $\operatorname{IR}(\tau)$, if there exists a constant $\tau>0$ such that

$$
\left\|\left(\mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}}\right)^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{N}}\right\|_{\infty} \leq 1-\tau
$$

## Remarks

- Note that for all $j \in \mathcal{N}$, the irrepresentable condition places a bound on $\left(\mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}}\right)^{-1} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{x}_{j}$, the coefficient for regressing $\mathbf{x}_{j}$ on the features in $\mathcal{S}$
- In words, this is saying no noise feature can be highly "represented" by the true signal features; if this were the case, we might select the noise feature instead of the true signal
- Note that the $\operatorname{IR}(\tau)$ condition requires $\boldsymbol{\Sigma}_{\mathcal{S}}$ to be invertible; let $\xi_{*}$ denote the minimum eigenvalue of $\frac{1}{n} \mathbf{X}_{\mathcal{S}}^{T} \mathbf{X}_{\mathcal{S}}$


## Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that $\mathbf{X}$ satisfies $\operatorname{IR}(\tau)$ and $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}^{*}+\boldsymbol{\varepsilon}$ with $\varepsilon_{i} \stackrel{\Perp}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$; let

$$
\begin{aligned}
\lambda & =\frac{8 \sigma}{\tau} \sqrt{\frac{\log p}{n}} \\
B & =\lambda\left(\frac{4 \sigma}{\sqrt{\xi_{*}}}+\left\|\boldsymbol{\Sigma}_{\mathcal{S}}^{-1}\right\|_{\infty}\right)
\end{aligned}
$$

Then with probability at least $1-c_{1} \exp \left\{-c_{2} n \lambda^{2}\right\}$, the lasso solution $\widehat{\boldsymbol{\beta}}$ has the following properties:

## Selection consistency theorem (Wainwright, 2009) (cont'd)

- Uniqueness: $\widehat{\boldsymbol{\beta}}$ is unique
- Estimation error bound: $\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{\infty} \leq B$
- No false inclusions: $\hat{\mathcal{S}} \subseteq \mathcal{S}$
- No false exclusions: $\hat{\mathcal{S}}$ includes all indices $j$ such that $\left|\beta_{j}^{*}\right|>B$ and is therefore selection consistent provided that all elements of $\boldsymbol{\beta}_{\mathcal{S}}^{*}$ are at least that large

