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Introduction

• Last time we derived results from a classical perspective in
which β∗ was fixed as n→∞
• Today, we will consider things from a non-asymptotic

perspective, obtaining bounds on estimation and prediction
error while allowing p > n

• Although results along these lines can be shown for other
penalized regression estimators as well, today’s lecture will
focus entirely on the lasso
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A preliminary lemma

• We’ll begin by discussing prediction, as we can prove results
here without requiring any additional conditions

• First, let us prove the following lemma, from which several of
our later results will derive

• Lemma: If λ ≥ 2
n‖X

Tε‖∞, then the lasso prediction error
satisfies

1

n
‖Xβ̂ −Xβ∗‖22 ≤ λ‖δ‖1 + 2λ‖β∗‖1 − 2λ‖δ + β∗‖1,

where δ = β̂ − β∗
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Prediction bound

• Based on this lemma, we have

• Theorem: If λ ≥ 2
n‖X

Tε‖∞, then the lasso prediction error
satisfies

1

n
‖Xβ̂ −Xβ∗‖22 ≤ 4λ‖β∗‖1

• Corollary: If λ = 2σ
√
c log(p)/n and y = Xβ∗ + ε with

εi
⊥⊥∼ N(0, σ2), then the lasso prediction error satisfies

1

n
‖Xβ̂ −Xβ∗‖22 ≤ 8σ‖β∗‖1

√
c log p

n

with probability at least 1− 2 exp{−1
2(c− 2) log p}
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Remarks

• The prediction error increases with noise and dimension, and
decreases with sample size – these dependencies are intuitive

• The dependence on ‖β∗‖ is less obvious; it is worth noting,
however, that up until this point, we have assumed nothing
about β∗ (or about X)

• This prediction result differs from our previous results:
previously, we had shown that prediction error was O(n−1),
whereas this result is O(n−1/2)
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Convexity conditions
Estimation bound
Prediction bound revisited

Eigenvalue conditions

• In the previous lecture, we introduced an eigenvalue condition:
namely, that XTX/n→ Σ, with the minimum eigenvalue of
Σ bounded above 0

• Why is this important?

• We’re finding the value β̂ that minimizes Q(β); but even if
we can guarantee that Q(β̂) ≈ Q(β∗), if the function is flat,
we have no guarantee that β̂ is close to β∗

• If p > n, however, it is clear that this condition can never be
met
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Convexity conditions
Estimation bound
Prediction bound revisited

Restricting our eigenvalue conditions

• In other words, our previous condition was:

1
nδ

TXTXδ

‖δ‖22

for all δ ∈ Rp

• However, what if this condition didn’t have to be met for all
δ ∈ Rp, but only for some δ ∈ Rp?

• For example, what if we only had to satisfy the condition for
δ ∈ RS?
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Convexity conditions
Estimation bound
Prediction bound revisited

A cone condition

• This is a step in the right direction, but not nearly strong
enough: for example, suppose a variable in N was perfectly
correlated with a variable in S
• We will definitely need to involve N in our condition as well,

but how to do so without running into dimensionality
problems?

• The key here is to require the eigenvalue condition for only
those δ vectors that fall mostly, or at least partially, in the
direction of β∗

• Theorem: If λ ≥ 2
n‖X

Tε‖∞, then

‖δN ‖1 ≤ 3‖δS‖1
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Convexity conditions
Estimation bound
Prediction bound revisited

Examples

• For example, suppose XTX/n looks like this:1 0 0
0 1 1
0 1 1


• We are in trouble if S contains either feature 2 or feature 3

• However, if S = {1} then there are no flat directions that lie
within the lasso cones

• Second example: Suppose S = {1} and x1 = x2 + x3 + x4;
then L(β) would be perfectly flat in the direction
δ = (1,−1,−1,−1), with ‖δN ‖1 ≤ 3‖δS‖1 satisfied – this
kind of X must be ruled out also
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Convexity conditions
Estimation bound
Prediction bound revisited

Illustration
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Convexity conditions
Estimation bound
Prediction bound revisited

Restricted eigenvalue condition

• Let us now formally state the restricted eigenvalue condition,
which I will denote RE(τ): There exists a constant τ > 0 such
that

1
nδ

TXTXδ

‖δ‖22
≥ τ

for all nonzero δ : ‖δN ‖1 ≤ 3‖δS‖1
• Note: This condition is specific to linear regression; the

general condition is known as restricted strong convexity and
would consist of replacing XTX/n with ∇L(β)
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Convexity conditions
Estimation bound
Prediction bound revisited

Other conditions

This is certainly not the only condition that people have used to
prove things in the high-dimensional setting; other similar
conditions include

• Irrepresentable condition

• Restricted isometry property (RIP)

• Compatibility condition

• Coherence condition

• Sparse Riesz condition

All of these conditions require that XS is full rank as well as
placing some sort of restriction on Σ and how strongly features in
S can be correlated with features in N
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Convexity conditions
Estimation bound
Prediction bound revisited

Estimation consistency

• With this condition in place, we’re ready to prove the
following theorem

• Theorem: Suppose X satisfies RE(τ) and λ ≥ 2
n‖X

Tε‖∞;
then

‖β̂ − β∗‖2 ≤
3

τ
λ
√
|S|

• Corollary: Suppose X satisfies RE(τ), y = Xβ∗ + ε with

εi
⊥⊥∼ N(0, σ2), and λ = 2σ

√
c log(p)/n; then

‖β̂ − β∗‖2 ≤
6σ

τ

√
c |S| log p

n

with probability 1− 2 exp{−1
2(c− 2) log p}
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Convexity conditions
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Remarks

• This rate makes a lot of sense:
◦ The error of the oracle estimator is on the order σ

√
|S| /n: no

method can estimate S parameters based on n observations at
a better rate than this

◦ The log p term is the price we pay to search over p features in
order to discover the sparse set S

• Note also the dependence on the eigenvalue parameter τ ; in
particular, if the minimum eigenvalue is close to 0, the
estimate rate will suffer significantly
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Convexity conditions
Estimation bound
Prediction bound revisited

Another look at prediction error

• Now that we’ve made some assumptions about X and β∗,
does this affect our prediction accuracy?

• Theorem: Suppose X satisfies RE(τ) and λ ≥ 2
n‖X

Tε‖∞;
then

1

n
‖Xβ̂ −Xβ∗‖22 ≤

9

τ
λ2 |S|

• Corollary: Suppose X satisfies RE(τ), y = Xβ∗ + ε with

εi
⊥⊥∼ N(0, σ2), and λ = 2σ

√
c log(p)/n; then

1

n
‖Xβ̂ −Xβ∗‖22 ≤ 36c

σ2

τ

|S| log p
n

with probability 1− 2 exp{−1
2(c− 2) log p}
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Convexity conditions
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Remarks

• We have now derived two results concerning the prediction
error of the lasso:
◦ No assumptions on X or β∗: MSPE = O(n−1/2), the “slow

rate”
◦ β∗ sparse, X satisfies RE(τ): MSPE = O(n−1), the “fast

rate”

• Further theoretical work has shown that these bounds are in
fact tight: no method can achieve the fast rate without
additional assumptions
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Irrepresentable condition

• Finally, we’ll take a look at the selection consistency of the
lasso in high dimensions, although we’re not going to have
time to prove our result in class

• We begin by noting that our restricted eigenvalue condition is
not enough to establish selection consistency; we need
something stronger

• The feature matrix X satisfies the irrepresentable condition,
which I will denote IR(τ), if there exists a constant τ > 0
such that

‖(XT
SXS)

−1XT
SXN ‖∞ ≤ 1− τ
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Remarks

• Note that for all j ∈ N , the irrepresentable condition places a
bound on (XT

SXS)
−1XT

Sxj , the coefficient for regressing xj

on the features in S
• In words, this is saying no noise feature can be highly

“represented” by the true signal features; if this were the case,
we might select the noise feature instead of the true signal

• Note that the IR(τ) condition requires ΣS to be invertible; let
ξ∗ denote the minimum eigenvalue of 1

nXT
SXS
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Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that X satisfies IR(τ) and y = Xβ∗ + ε with

εi
⊥⊥∼ N(0, σ2); let

λ =
8σ

τ

√
log p

n

B = λ

(
4σ√
ξ∗

+ ‖Σ−1S ‖∞
)

Then with probability at least 1− c1 exp{−c2nλ2}, the lasso
solution β̂ has the following properties:
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Selection consistency theorem (Wainwright, 2009) (cont’d)

• Uniqueness: β̂ is unique

• Estimation error bound: ‖β̂ − β∗‖∞ ≤ B
• No false inclusions: Ŝ ⊆ S
• No false exclusions: Ŝ includes all indices j such that
|β∗j | > B and is therefore selection consistent provided that all
elements of β∗S are at least that large
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