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Introduction

• This course concerns the analysis of data in which we are
attempting to predict an outcome Y using a number of
explanatory factors X1, X2, X3, . . ., some of which may not be
particularly useful

• Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective
that we would like the statistical methods to be interpretable
and to explain something about the relationship between the
X and Y

• Regression models are an attractive framework for
approaching problems of this type, and the majority of the
course will focus on extending classical regression modeling to
deal with high-dimensional data
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High-dimensional data

Modern computation has changed the way science is conducted,
and enabled researchers to easily collect, store, and access data for
large numbers of features (ballpark number of features in
parentheses):

• Advances in information technology such as REDCap (∼ 100)

• Adoption of electronic medical records (> 100)

• Molecular biology technologies such as microarrays and
RNA-Seq (> 10, 000)

• Advances in genotyping and genetic sequencing (> 100, 000)
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High-dimensional data (cont’d)

• This type of data is known as high dimensional data

• Throughout the course, we will let
◦ n denote the number of independent sampling units (e.g.,

number of patients)
◦ p denote the number of features recorded for each unit

• In high-dimensional data, p is large with respect to n
◦ This certainly includes the case where p > n
◦ However, the ideas we discuss in this course are also relevant

to many situations in which p < n; for example, if n = 100 and
p = 80, we probably don’t want to use ordinary least squares
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More notation

• We will use X denote the n× p matrix containing the
predictor variables, with element xij recording the value of the
jth feature for the ith independent unit

• We will let y denote the length-n vector of response values

• For the sake of simplicity, for most of the course we will
assume that Y is normally distributed, but we will consider
other types of responses in the “Other likelihoods” topic
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Univariate analysis

• A simple, widely used approach to analyzing high-dimensional
data is to split the problem up into a large number of
low-dimensional problems

• For example, rather than trying to regress y simultaneously on
all the features, we can carry out p separate single-variable
regressions, one for each feature:

yi = αj + βjxij + εi

εi
⊥⊥∼ N(0, σ2);

this approach is also known as marginal regression
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Univariate analysis: Challenges

• The appeal of this approach is classical regression can be
easily applied to the separate analyses to yield estimates {β̂j},
confidence intervals, and test hypotheses to produce p-values
{pj}
• The major complication, however, is that this approach

involves a large number of separate analyses that must
somehow be combined into a single set of results

• Thus, while standard methods can be used for the initial
analyses, there has been a great deal of innovation over the
past 30 years in terms of how to combine these results; we will
discuss these innovations during the “Large scale testing”
topic
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Limitations of univariate models

Marginal regression is straightforward, but has several drawbacks:

• Fails to account for correlation among the features

• Provides no way to estimate the independent effect of a
feature while other features remain unchanged

• Diminished power

• No good way to combine the predictions of separate
regressions into a single overall prediction

• No way of assessing the overall proportion of the variability in
the outcome that may be explained by the features
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• These issues can only be resolved by considering a joint model
of the relationship between y and the full set of features:

yi = β0 +

p∑
j=1

βjxij + εi

εi
⊥⊥∼ N(0, σ2)

• The maximum likelihood approach involves solving for the
value of β, known as the maximum likelihood estimator
(MLE), that minimizes the residual sum of squares
‖y −Xβ‖2

• Here, ‖v‖ =
√∑

i v
2
i denotes the Euclidean norm; we will use

this notation frequently throughout the course
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• The solution is determined by the linear system of equations

XTXβ̂ = XTy

• Provided that XTX is invertible, the system has the unique
solution

β̂ = (XTX)−1XTy,

known as the ordinary least squares (OLS) estimate

• The OLS estimate resolves all of the issues on slide 8 and has
many well-recognized benefits such as yielding best linear
unbiased estimates of β
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• However, there are many drawbacks to the use of maximum
likelihood for estimating β when p is large

• Most dramatically, when p ≥ n the matrix XTX is not
invertible and the MLE is not unique

• However, even if XTX can be inverted and a unique
maximum identified, as p increases and XTX approaches
singularity, the likelihood surface becomes very flat

• This means that a wide range of values of β are consistent
with the data and wide confidence intervals required to
achieve, say, 95% coverage
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An example

Consider a matrix X with n = 20 and whose elements consist of
independent, normally distributed random numbers; the figure
below plots the largest variance of the β̂j estimates as we increase
the number of columns in X:
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• As p→ n, V(β̂) increases without bound; the increase is
substantial as p approaches n, and infinite when p ≥ n
• Clearly, maximum likelihood cannot accommodate

high-dimensional data without running into serious problems
of identifiability and inefficiency
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• Suppose, however, that many features are unrelated to the
outcome (in the sense that βj = 0), and only a few features
are important

• If we knew in advance which elements of β are zero and which
are not, then we could modify maximum likelihood without
abandoning it completely, and avoid all of the earlier problems

• Specifically, we could apply maximum likelihood only to the
variables for which βj 6= 0; this is known as the oracle model
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• Obviously, the oracle model is a theoretical gold standard, not
a realistic approach to data analysis, as it would require access
to an oracle that could tell you which features are related to
the outcome and which are not

• In the real world, we have to use the data in order to make
empirical decisions about which features are related to the
outcome and which are not; this is known as model selection
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• Unfortunately, using the same data for two purposes – to
select the model and also to carry out inference with respect
to the model’s parameters – introduces substantial biases and
invalidates the inferential properties that maximum likelihood
typically possesses

• To illustrate, consider the following simulation:

xij
⊥⊥∼ Unif(0, 1) for j in 1, 2, . . . , 100

yi
⊥⊥∼ N(0, 1)

for i in 1, 2, . . . , 25

• We will use BIC to select the 5 most important variables, then
use OLS with only those variables, and repeat this 100 times
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MSE, MSPE, and ME

• Before we show the results, let’s define three quantities that
we will use throughout the semester
• The first is the mean squared (estimation) error, or MSE:

MSE = E‖β̂ − β‖2

Note: “mean” here refers to the expected value, not to averaging
over the number of terms we are estimating

• The second is the mean squared prediction error, or MSPE:

MSPE =
1

n

n∑
i=1

(yi − f(xi))
2 (sample)

MSPE = E{(Y − f(x))2|x} (population)

Note: For linear regression, f(xi) = xT
i β̂; from context, it is usually

clear which one we are talking about, but if necessary, I will denote

the former M̂SPE
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MSE, MSPE, and ME (cont’d)

• Lastly, we will sometimes refer to the model error (ME):

ME = {E(y|x)− f(x)}2

• Note that for (homoskedastic) linear regression models,
MSPE = ME+ σ2, but the distinction is useful when
considering consistency, since ideally ME will go to zero for a
model as we collect more data, but it is impossible for MSPE
to go to zero

• Finally, note that in random x settings, all three quantities
would have an additional outer expectation over x (keep this
in mind for your simulations)
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Results

A histogram of the 500 β̂j estimates we obtain:
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Remarks

• As we will see, this approach performs terribly

• By using the data set for model selection as well as estimation
and inference, we have grossly distorted the sampling
distribution of β̂

• This has dramatic consequences in terms of estimation,
prediction, variable selection, and the validity of inference
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Estimation

• The model selection process heavily biases the estimates of
the regression coefficients away from zero

• In our simulation, most estimates were approximately ±1.5
instead of being close to 0, the true value

• In particular, the average MSE is 2.7, compared to 0.48 for
marginal regression, roughly a 5-fold increase

• This phenomenon is sometimes referred to as the “winners’
curse”
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Variable selection

• Here, we imposed an upper bound of 5 on the number of
variables we allowed to be selected by the BIC-guided forward
selection process; in all 100 replications, this upper bound was
reached

• Obviously, since the true model in this case is the null
(intercept-only) model, the model selection process we have
employed here results in systematic overfitting

• While it is true that asymptotically, BIC will select the true
model with probability tending to 1, that asymptotic
argument relies on p remaining fixed while n→∞, or in other
words, on n� p

• Clearly, BIC cannot be relied on for accurate variable selection
in high-dimensional problems
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Prediction

• On average, the selected models achieved a mean squared
prediction error of 2.15, compared to a prediction error of
σ2 = 1 for the null model

• Thus, by carrying out model selection, we have reduced the
predictive accuracy of the model by half (doubled its error)
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Inference

• Finally, let us consider the validity of the inferences that we
obtain from the post-selection OLS model:
◦ The median p-value for testing H0 : βj = 0 was p = 0.0013
◦ The actual coverage achieved by constructing 95% confidence

intervals was under 5%

• Ignoring selection effects when carrying out post-selection
inference produces conclusions that are far too liberal, with
actual errors accumulating at a much higher rate than the
statistical inferential approaches would indicate

• In summary, this approach is wildly optimistic and
overconfident
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Final remarks

• These problems are widely recognized; unfortunately, they are
also widely ignored

• The problem of developing statistical methods capable of
simultaneous variable selection and inference has challenged
statisticians for decades, from Scheffé (1953) to the present

• One of the primary goals of this course is to demonstrate the
extent to which recent developments in penalized regression
address and alleviate the concerns about simultaneous
selection and inference we have raised today
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