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Introduction

• In this final lecture, we will briefly look at two other kinds of
time-to-event data and how the models we’ve discussed
previously can be extended to analyze them
• First, we’ll consider multi-state models, which we briefly
introduced last time
• The main idea is that as a subject moves through time, they
can transition between multiple states, with A(t) denoting
their state at time t; our previous setup can be thought of a
special case with just two states, alive and dead, with no
possibility of the transition dead → alive
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An illustration

For example, a model for the transitions between various stages of
the progression of AIDS might look like:

HIV

AIDS

Infection

Death

where infection denotes an opportunistic infection associated with
immune deficiency
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Transition rates

• Multistate data are modeled according to the transition rate
λij(t), which describes the probability of transitioning to state
j, given that an individual is in state i at time t:

λij(t) = lim
h→0

h−1P{A(t+ h) = j|A(t) = i}

• Implicit in this definition is the idea that A(t) is a Markov
process, meaning that transition probabilities depend only on
the current state A(t) and not the specific path taken to
arrive at A(t)
• This is equivalent to our definition of the type-specific hazard
from the previous lecture; at each state, we have competing
risks corresponding to the probabilities of transitioning to the
other states of the model
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Applying regression methods

• Thus, we could use any of the models we have discussed so
far to model transition rates
• For example, a parametric model such as Weibull regression
would allow us to estimate transition probabilities
continuously, while the semiparametric Cox model would
restrict transition probabilities to occur only at times where
we have already seen an i→ j transiton
• Note that this would require separate models for each i→ j

transition
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Homogenous, nonhomogeneous, and renewal models

• The simplest model, of course, is an exponential model, where
λij(t) = λij ; because these transition probabilities do not
depend on t, this model is said to be homogeneous
• If the transition probabilities do depend on time, we have a
choice to make:
◦ Modeling the transition rates as a function of t, the total time

on study (this would be a nonhomogeneous Markov model)
◦ Modeling the transition rates as a function of the time since

arriving at the current state (this would be a Markov renewal
model)
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Introduction

• Another type of time-to-event data that can arise is the
possibility that the event can occur multiple times
• Some examples include:

◦ Recurrence of cancer
◦ Infections
◦ Hospital readmissions
◦ Relapses for drug abuse
◦ Service/repair calls for a machine
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Intensity process

• Let T1, T2, . . . denote the time until the first event, second
event, and so on for a given subject, and let C denote the
total follow-up time
• Note that for recurrent events, everyone is eventually
censored; if events can continue to occur, we are never
finished observing a subject
• Let N(t) denote the number of events that an individual

experiences by time t; the intensity process (which may be
extended to depend on covariates, of course) is

λ(t) = lim
h→0

h−1P{N(t+ h)−N(t) = 1}
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Connection with Cox regression

• If N(t) is a strictly continuous process, one may use the
regression methods we have discussed thus far to model it
• This works very similarly to the idea of subject duplication
that we discussed with regard to time-dependent covariates: a
subject that experiences recurrent events t1 and t2, then is
censored at c, with t1 < t2 < c would be represented with
multiple entries in a data frame as

Start Stop Event Recurrence

0 t1 1 1
t1 t2 1 2
t2 c 0 3
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Conditioning on previous recurrences

• The key decisions when modeling recurrent events are whether
and how to condition on previous recurrences
• The simplest approach would be to assume that events are
completely independent, and that the risk of an event at time
t is the same regardless of whether it’s the first, second, or
third recurrence
• Alternatively, one might consider the number of events as a
(time-dependent) covariate in the model
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Stratification

• It is important to note, however, that using the number of
recurrent events experienced so far as a time-dependent
covariate assumes proportional hazards across the different
recurrences
• This is often an unrealistic assumption; as an alternative, we
might consider allowing each recurrent failure to have its own
baseline distribution
• Recall that this can be accomplished through stratification
(this time, on a time-dependent covariate) in the Cox model
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Gap time models

• Finally, we also face a similar decision that we saw in
multi-state modeling: whether to model time to recurrence
since baseline, or time since the last recurrence
• The latter type of model is known as a gap time model; to fit

it, we would simply need to reorganize the data as (to revisit
our earlier example):

Time Event Recurrence

t1 1 1
t2 − t1 1 2
c− t2 0 3

• Like origin-time models, we would again have to decide how
to condition on previous recurrences (ignore, assume
proportional hazards, stratify)
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Bladder cancer data

• To briefly illustrate these models, we will analyze data from a
VA study of bladder cancer recurrence (bladder2 in the
survival package)
• In the study, all patients had bladder tumors when they
entered the trial
• At the start of the trial (t = 0), these tumors were removed
and the patients randomly assigned to receive the anticancer
drug thiotepa or a placebo
• In addition, we have covariate data on the initial number of
tumors and the size of the largest initial tumor
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Origin-time, unconditional model

> fit <- coxph(Surv(start, stop, event) ~
rx + number + size, bladder2)

> summary(fit)
n= 178, number of events= 112

coef exp(coef) se(coef) z Pr(>|z|)
rx -0.46469 0.62833 0.19973 -2.327 0.019989
number 0.17496 1.19120 0.04707 3.717 0.000202
size -0.04366 0.95728 0.06905 -0.632 0.527196

Concordance= 0.634 (se = 0.03 )
Rsquare= 0.094 (max possible= 0.994 )
Likelihood ratio test= 17.52 on 3 df, p=0.0005531
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Origin-time, # recurrence as covariate

> fit <- coxph(Surv(start, stop, event) ~
rx + number + size + factor(enum), bladder2)

> summary(fit)
n= 178, number of events= 112

coef exp(coef) se(coef) z Pr(>|z|)
rx -0.279944 0.755826 0.205765 -1.361 0.173671
number 0.140337 1.150661 0.051418 2.729 0.006347
size -0.003751 0.996256 0.070320 -0.053 0.957464
factor(enum)2 0.589260 1.802654 0.256782 2.295 0.021745
factor(enum)3 1.680455 5.367995 0.302358 5.558 2.73e-08
factor(enum)4 1.337645 3.810061 0.351012 3.811 0.000139

Concordance= 0.68 (se = 0.03 )
Rsquare= 0.247 (max possible= 0.994 )
Likelihood ratio test= 50.54 on 6 df, p=3.662e-09
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Origin-time, stratified

fit <- coxph(Surv(start, stop, event) ~
rx + number + size + strata(enum), bladder2)

Coefficients and Wald tests for treatment:

Recurrence β̂ z p

1 -0.53 -1.67 0.10
2 -0.50 -1.24 0.21
3 0.14 0.21 0.83
4 0.05 0.06 0.95
Overall -0.43 -1.96 0.05
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Baseline hazards for stratified origin-time model
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Gap time, unconditional model

> fit <- coxph(Surv(stop - start, event) ~
rx + number + size, bladder2)

> summary(fit)
n= 178, number of events= 112

coef exp(coef) se(coef) z Pr(>|z|)
rx -0.37446 0.68766 0.20237 -1.850 0.06426
number 0.15877 1.17207 0.04881 3.253 0.00114
size -0.02014 0.98006 0.06793 -0.296 0.76686

Concordance= 0.6 (se = 0.032 )
Rsquare= 0.066 (max possible= 0.997 )
Likelihood ratio test= 12.08 on 3 df, p=0.007119
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Gap time, # recurrence as covariate

> fit <- coxph(Surv(stop - start, event) ~
rx + number + size + factor(enum), bladder2)

> summary(fit)
n= 178, number of events= 112

coef exp(coef) se(coef) z Pr(>|z|)
rx -0.298270 0.742101 0.205890 -1.449 0.14743
number 0.152642 1.164908 0.051659 2.955 0.00313
size 0.005046 1.005059 0.069182 0.073 0.94186
factor(enum)2 0.181182 1.198633 0.243627 0.744 0.45707
factor(enum)3 0.879807 2.410433 0.269588 3.264 0.00110
factor(enum)4 0.745181 2.106823 0.314762 2.367 0.01791

Concordance= 0.619 (se = 0.032 )
Rsquare= 0.128 (max possible= 0.997 )
Likelihood ratio test= 24.36 on 6 df, p=0.0004477
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Gap time, stratified

fit <- coxph(Surv(stop - start, event) ~
rx + number + size + strata(enum), bladder2)

Coefficients and Wald tests for treatment:

Recurrence β̂ z p

1 -0.53 -1.67 0.10
2 -0.27 -0.67 0.50
3 0.21 0.38 0.70
4 -0.22 -0.34 0.73
Overall -0.28 -1.35 0.18
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Baseline hazards for stratified gap-time model

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Time (Months)

B
as

el
in

e 
su

rv
iv

al

1 2 3 4

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 21 / 22



Multistate models
Recurrent events

Remarks

• Overall, I would tend to place the most trust in the stratified
gap-time model in this example
• The general conclusion would be that there seems to be
marginal evidence that the treatment is effective at preventing
the first recurrence of bladder cancer, but no evidence that
the treatment is effect at preventing future recurrences
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