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Introduction

• Throughout this class, we’ve looked at data and methods for
studies involving the time until a single event
• Even when multiple events were present (e.g., death and liver
failure in the PBC data), we combined them into a single
event (progression-free survival)
• In this lecture, we’ll consider the problem of how to analyze
multiple, distinct failure types, treating them as separate
outcomes rather than combining them (this is a rather
complex topic, so we’ll just get an overview of the main issues
today)
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Endometrial cancer data

• As a motivating example, we’ll consider data from a study of
endometrial adenocarcinoma, the most common gynecologic
cancer in the United States
• The study focused on medically inoperable patients – i.e.,
women with serious comorbidities such as diabetes and
cardiovascular disease that make surgery too risky as a
treatment option
• These women were treated with radiation therapy only, with
data coming from a consortium of five academic cancer
centers
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Endometrial cancer data (cont’d)

• Follow-up data on 74 women was available from the time of
diagnosis until the time of either death or the end of the study
• The cause of death was also recorded, as either having been
caused by the endometrial adenocarcinoma itself, or having
been due to other causes
• In addition to the time until death, we also have data on the
time until recurrence of the cancer following radiation therapy
• The three outcomes in this study provide a good illustration
of the various kinds of relationships that can occur when
considering multiple failure types
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Recurrence vs. time to death from other causes

• For example, consider the relationship between recurrence and
time to death from other causes
• It is possible that recurrence of the cancer increases the risk of
death from other causes, but has no effect on the risk of say,
dying due to cardiac problems
• This question could be reasonably handled through the use of
time-dependent covariates, as discussed in the previous lecture
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Recurrence vs. disease-specific death

• On the other hand, the relationship between recurrence and
disease-specific death would not make much sense to model
using time-dependent covariates, at least using a proportional
hazards model, since it would be impossible to die of cancer
without the cancer first recurring
• Instead, something like a multi-state model might be of
interest:

Remission λ1−→ Recurrence λ2−→ Death

where λ1 and λ2 represent conditional hazards, also known in
this context as transition rates
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Disease-specific death vs. death from other causes

• The relationship between disease-specific death and death
from other causes is different yet again, since these two
outcomes are mutually exclusive
• In a sense, one could treat death from other causes as a
censoring event, but this isn’t exactly right, as it implies that
once an individual dies from other causes, we still don’t know
when they might die of cancer
• This situation, in which only one event out of a group of
potential events can occur in any given subject, is known as
the problem of competing risks
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Mathematical formulation
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Results

Type-specific hazard

• Let us begin by extending our mathematical definitions of
hazard and related quantities to accommodate multiple failure
types
• Let T denote the time until failure, and K indicate the type

of failure
• The type-specific hazard is then defined as

λk(t) = lim
h→0

P{t ≤ T < t+ h,K = k|T ≥ t}
h
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Overall hazard and survival

• In the case where the failure types are mutually exclusive (i.e.,
the case of competing risks), the overall hazard is

λ(t) =
∑
k

λk(t)

• Likewise, the overall survival is

S(t) = exp
{
−
∫ t

0
λ(s)ds

}
• Note that it makes sense to discuss type-specific hazards, but
typically doesn’t make sense to describe type-specific survival
– if a subject survives, they survive all of the risks involved
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Subdistributions

• Thus, while we have largely focused on estimating and
examining survival functions throughout the course, we will
have to use something else in the case of competing risks
• One possibility would be the cumulative hazard, but that
tends to be unpopular due to the difficulty of interpreting it
• A widely used alternative is to extend the density and
distribution functions to accommodate type-specific failures
• Because the time to a type-specific event no longer has a
proper distribution, these extensions are known as the
“subdensity” and “subdistribution” functions
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The cumulative incidence function

• The subdensity function for type k is defined as

fk(t) = λk(t)S(t)

• Similarly, the subdistribution function is defined as

Fk(t) =
∫ t

0
fk(s)ds

• The subdistribution function is also known as the cumulative
incidence function, which is the common name for this
quantity in applied work

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 11 / 27



Introduction
Cumulative incidence functions

Additional topics

Mathematical formulation
Estimation
Results

Nonparametric likelihood

• Nonparametric estimation of cumulative incidence functions is
very similar to the nonparametric maximum likelihood
estimation of survival functions in the Kaplan-Meier case
• Letting t1 < t2 < · · · denote the unique failure times, djk
denote the number of failures of type k at time tj , and nj
denote the number at risk at time tj , the nonparametric MLEs
for F1, . . . , Fk can be found by maximizing the likelihood∏

j

∏
k

λ
djk

jk (1− λj)nj−dj ,

where λjk = λk(tj), λj =
∑
k λjk, and dj =

∑
k djk
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Estimate of cumulative incidence

• Maximizing the likelihood on the previous slide yields

λ̂jk = djk
nj

• These estimates, in turn, yield an estimate of the cumulative
incidence function via

F̂k(t) =
∑
tj≤t

λ̂jk
∏
ti<tj

{1− λ̂i};

note that the term involving the product is simply the
Kaplan-Meier estimate Ŝ(t−j )
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R code

• The survfit function can also be used to fit incidence
functions
• To use it, instead of passing 0/1 as the status indicator to

Surv, one supplies a factor, with the first level taken to be the
censoring indicator
• Otherwise, the code is the same:

fit <- survfit(Surv(tDeath, sDeath) ~ 1, Data)
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More on R

• The usual R functions for working with survfit objects also
work with competing risks, such as summary for obtaining
estimates at specific time points and plot for plotting the
curves
• It is worth noting that the survival package refers to the
cumulative incidence in each category as the “state
probability”
• In particular, fit$pstate contains the cumulative incidence
function estimates, with fit$lower and fit$upper
containing the confidence interval endpoints; all three
quantities are matrices now, with one column for each
competing risk as well as one for the category of “alive”
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Results
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Results w/ confidence band
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Comments

• Although the idea of a subdistribution may seem foreign at
first, its ease of interpretation is one big reason they are
widely estimated and analyzed
• For example, in the endometrial cancer data, they allow us to
estimate that after 5 years, 13% of patients will have died due
to cancer, 56% due to other causes, and the remaining 31%
will still be alive
• This same goes for regression modeling approaches (we will
discuss these later), which allow us to incorporate more
specific information for a given subject in making those
predictions
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Conditional recurrence

• Cumulative incidence functions are not always the only
quantities of interest when multiple time-to-event endpoints
are present
• For example, one quantity of interest in the endometrial
cancer study is the percent of surviving patients who have
experienced recurrence by a given time
• This quantity was originally studied by Pepe (1991),
“Inference for Events with Dependent Risks in Multiple
Endpoint Studies”, who referred to it as the conditional
prevalence
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Estimate

• Interestingly, the conditional prevalence can be consistently
estimated by a combination of simple Kaplan-Meier estimates
• Letting ŜOS denote the estimated survival function with

respect to overall survival (i.e., all-cause mortality) and ŜPFS
denote the estimated progression-free survival, the estimated
conditional recurrence is given by

RC(t) = 1− ŜPFS(t)
ŜOS(t)

• It is worth mentioning that unlike survival functions and
cumulative incidence functions, the conditional prevalence is
not necessarily monotone
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Conditional recurrence in endometrial cancer study
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Confidence intervals

• Pepe (1991) provides some asymptotic derivations for the
standard error of the conditional prevalence
• Another possibility is to use the bootstrap
• Here, we simply resample from the original group of subjects,
calculate ŜOS(t), ŜPFS(t), and RC(t) based on the resampled
subjects
• This is then repeated a large number of times (e.g., 1,000)
and the 2.5th and 97.5th quantiles of the bootstrapped
estimates form a confidence interval for RC(t)
• This is known as the bootstrap percentile method; there are
other ways of forming bootstrap confidence intervals as well
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Results w/ confidence intervals
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Remarks

• The cumulative incidence functions and the conditional
recurrence plots both indicate that radiation therapy provides
adequate management of cancer risk in these patients, with
recurrence only occurring in approximately 16% of patients
• Furthermore, radiation therapy is likely preferable to more
aggressive interventions, as the risk of death from other
causes is the greater medical concern here, roughly 3 times
higher than the risk of death due to cancer recurrence
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Cause-specific Cox models

• A natural next question, which we will only briefly touch
upon, is how to incorporate covariates into the explanation
and prediction of competing risks
• Cause-specific hazards, λj(t), can be estimated with separate,

ordinary Cox regression models by redefining the failure
indicator to be 1 if and only if the patient fails due specifically
to cause j
• This analysis approach is known as cause-specific Cox

modeling
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Fine-Gray competing risk regression

• An alternative approach, proposed in a landmark paper by
Fine and Gray (1999), “A Proportional Hazards Model for the
Subdistribution of a Competing Risk”, focuses on directly
modeling the cumulative incidence, while retaining the
semiparametric nature of Cox regression
• This approach is not available in the survival package, but
is implemented in the package cmprsk through the function
crr, for competing risks regression
• It is worth noting that crr does not offer a formula interface
(you have to specify the design matrix X directly); a wrapper
to crr with a formula interface, FGR() is available in the
riskRegression package, which also offers a wrapper,
CSC(), for cause-specific Cox models
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Comparing the two frameworks

• The key conceptual difference between the two is that for
CSC models, an individual is removed from the risk set when
a failure due to other causes occurs, whereas in the Fine-Gray
model, that individual remains in the risk set
• In the Fine-Gray model, it is important to be aware that if a
predictor increases the risk of failure A and has no effect on
failure B, the predictor will have a negative coefficient for
outcome B, not zero
• On the other hand, if a predictor increases the risk of all types
of failure equally, the coefficient will be positive in the CSC
model and may be zero in the Fine-Gray model, since this
predictor doesn’t affect the balance of risk across causes
• Both models have their uses – just be careful that you use the
one that best reflects the scientific goals of the study
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