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Introduction

• In today’s lecture, we will see how survival analysis works from
the Bayesian perspective, beginning with one-parameter
models and continuing through multiparameter models and
then looking at semiparametric modeling
• This shift in perspective is not as dramatic as it might first
appear, in the sense that we have spent a great deal of time
talking about likelihood, which is also an integral component
of Bayesian analysis
• The notion of a prior, however, is unique to Bayesian analysis,
and I will provide a quick overview
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Bayesian inference: Main idea

The central idea of the Bayesian framework is that if we treat θ as
a random variable, then

p(θ|x) = p(θ)p(x|θ)
p(x) ,

where
• p(x|θ) is the likelihood
• p(θ) is the prior: Our beliefs about the plausible values of our
parameter before seeing any data
• p(θ|x) is the posterior: Our updated beliefs about the
plausible values for our parameter after seeing the data
• p(x) is a normalizing constant typically not of interest
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Priors

• To carry out Bayesian inference, therefore, we need to specify
both a prior as well as a likelihood
• Broadly speaking, there are two main ways of specifying
priors:
◦ Informative priors attempt to incorporate knowledge from

other sources such as past studies in order to realistically
capture one’s state of knowledge about θ

◦ Reference priors attempt to represent a vague, uninformed
baseline, so that all conclusions will be based on the data
alone, not from any external sources
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Inference

• Once the model has been specified, all inference is based on
the posterior p(θ|x)
• For example, we can obtain point estimates via the posterior
mean

∫
θp(θ|x) dθ or posterior mode maxθ p(θ|x)

• We can obtain 95% posterior intervals [a, b] such that∫ b
a p(θ|x) dθ = 0.95

• We can calculate tail probabilities: P(θ < 0) =
∫ 0
−∞ p(θ|x) dθ

• Note that with the Bayesian approach, no asymptotic
arguments are required, although the integrals involved may
be complicated, and thus, numerical integration methods are
typically crucial to Bayesian methodology
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Pike rat example

• To illustrate, let’s analyze the Pike rat data using an
exponential distribution
• Recall that in the frequentist version of this analysis,

◦ The Score/Wald test of H0 : λ = 1 yielded p = 0.07, while the
LRT p-value was 0.04

◦ However, the exponential fit isn’t very good
• For the exponential distribution, λ ∼ Γ(α, β) is a convenient

(conjugate) prior, resulting in a closed form for the posterior:

λ|v ∼ Γ(α+ d, β + v),

where d =
∑
i di and v =

∑
i ti
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Bayesian approach: Reference prior

We will look at two potential prior distributions; first, an
uninformative flat prior:
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• P(λ < 1|d, v) = 0.014
• 95% PI: (1.04, 2.00)
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Bayesian approach: Gamma(3,3) prior

Suppose prior studies suggested that λ was likely between 0 and 2,
and could reasonably be represented by a Gamma(3,3) distribution:
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• P(λ < 1|d, v) = 0.028
• 95% PI: (0.99, 1.87)
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Nuisance parameters in the Bayesian setting

• As we have seen, nuisance parameters are a thorny problem in
frequentist statistics, with several ways of addressing the issue
(score, Wald, LRT, plus lots of others we didn’t talk about)
• The Bayesian approach deals with nuisance parameters in a
very different way
• Since inference is based on the posterior:

p(θ|x) ∝ p(θ)p(x|θ),

to obtain the marginal posterior for θj , we simply integrate
over the possible values of θ−j :

f(θj |x) =
∫
f(θ|x) dθ−j
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Monte Carlo integration

• In multi-parameter problems, we almost always rely on
numerical integration
• This can be done in multiple ways, but the most common way
is to generate random samples from the posterior (Monte
Carlo integration); with such a sample,
◦ Posterior means can be approximated by sample means
◦ Posterior quantiles can be approximated by sample quantiles,

etc.
◦ Integrating over nuisance parameters can be approximated by

simply looking at the marginal distribution of interest (one
must still, of course, generate the random sample from the full
posterior)

• Sounds nice...how are these random samples generated?

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 10 / 30



One-parameter models
Multiparameter models

Semiparametric regression

Nuisance parameters
JAGS
Example: Gamma distribution

MCMC software

• The dominant method for generating such samples is via
Markov chains (Markov chain Monte Carlo, or MCMC)
• A detailed discussion of MCMC methodology is beyond the
scope of this course, but it involves generating new draws
from conditional distributions θ(m+1) ∼ f(Data, θ(m)) in such
a way that the distribution of {θ(m)}∞m=1 converges to the
posterior distribution
• There are three commonly used programs for MCMC:

◦ OpenBUGS (ancestor: WinBUGS)
◦ JAGS (which we will be using)
◦ STAN (impressive, but underdeveloped for survival . . . for now)

all of which let the user specify the model and take care of the
MCMC details for you
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JAGS

• To install JAGS on a Windows machine:
https://sourceforge.net/projects/mcmc-jags
download and run the installer, clicking through to accept all
the defaults (for install instructions on Linux/Mac, e-mail me)
• JAGS syntax is fairly intuitive; to implement fitting a gamma
distribution to right-censored data with reference priors, the
JAGS model specification would look like:
model {

for (i in 1:n) {
cens[i] ~ dinterval(t[i], tos[i]) # 1 if censored
t[i] ~ dgamma(shape, rate) # NA if censored

}
shape ~ dunif(0, 1000)
rate ~ dunif(0, 1000)

}
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rjags

JAGS can be run directly, but it’s more convenient to run through
its companion R package rjags:

library(rjags)
jagsData <- list(n = nrow(Data),

t = ifelse(Death==1, Time, NA),
tos = Time,
cens= 1-Death)

model <- jags.model(model_file,
data = jagsData,
n.chains = 4,
n.adapt = 1000)

post <- jags.samples(model, c('rate', 'shape'), 10000)
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Pike rat data: Gamma model

• To illustrate, let’s re-analyze the Pike rat data using a Gamma
model (code given on previous two slides; it’s online as well)
• Recall that in the frequentist version of this analysis,

◦ The Gamma distribution was vastly superior to the exponential
in terms of fitting the data

◦ When carrying out inference for the rate parameter, taking into
account uncertainty regarding the shape parameter was critical

• In the interest of time, I’m skipping some of the
implementation details
◦ I’m not going to go over every line of code, but all the code is

provided online, with comments
◦ Also, some additional code is provided for things like checking

MCMC diagnostics (they all look fine)
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Empirical Bayes

• A similar phenomenon happens in Bayesian inference
• Suppose that we simply replace α in the model with α̂ and

treat α̂ as a constant (or, depending on your perspective, put
a point prior with infinite strength on α = α̂)
• This is known as an empirical Bayes approach
• Empirical Bayes certainly has its applications and can be a
very useful statistical method, although this is an example of
using it badly
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Bayesian posterior for λ in the Pike rat study
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Confidence/posterior intervals

Nuisance parameters
Ignored Accounted for

SE 1.2 8.4
Wald (32.7, 37.4) (18.6, 51.4)
Likelihood ratio (32.7, 37.4) (21.1, 54.1)
Bayes (32.7, 37.4) (23.6, 53.6)
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Introduction

• Recall the proportional hazards model:

λi(t) = λ0(t) exp(xTi β),

where different choices of λ0(t) lead to different parametric
models (exponential, Weibull, etc.)
• As we have discussed, however, parametric models often
provide unsatisfactory fits to real data
• Our primary interest is in the regression coefficients; it would
be unfortunate if misspecifying λ0 led us to incorrect inference
for β, so in principle, we’d like to make as few assumptions
about λ0 as possible
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Piecewise exponential

• Last time, we introduced one approach for doing so called Cox
regression; today, we will examine a Bayesian model that
behaves similarly
• As we saw earlier in the course with the Kaplan-Meier
estimator, there is sometimes a fine line between
“nonparametric” and “having a lot of parameters”
• With this in mind, let’s consider modeling λ0 as a piecewise

constant function:

λ0(t) = λj for all t ∈ [aj−1, aj)

with 0 = a0 < a1 < · · · < aK , where K denotes the total
number of intervals; the resulting distribution could be
thought of as piecewise exponential
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Piecewise exponential: Hazard
Note that the hazard is piecewise constant, but the survival
function is not
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Equivalent Poisson

• OK, but piecewise constant hazard isn’t exactly a standard
distribution; how can we encode the equivalent of
t[i] ~ dgamma(shape, rate)?
• To do so, we can use a clever rearrangement of the data such
that its likelihood matches that of a Poisson distribution
• Let Nij indicate whether subject i failed in interval j:

Nij = 1{ti ∈ (aj−1, aj) and di = 1};

in what follows, I will assume that the cutpoints {aj} are
chosen such that aj 6= ti ∀ i, j; cutpoints can always be chosen
in this way
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Equivalent Poisson (cont’d)

• Subject i’s contribution to the likelihood can then be written

Li =
K∏
j=1

(eηiλj)Nij exp{−eηiHijλj},

where

Hij =
{

min(ti, aj)− aj−1 if ti > aj

0 if ti < aj

• This looks quite similar to the Poisson likelihood with rate
parameter θij = eηiHijλj
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Equivalent Poisson (cont’d)

• Indeed, the ratio between the two likelihoods is Hij∗, where
j∗ is the interval such that Nij∗ = 1 (the two are identical for
a censored observation)
• Since Hij does not involve any parameters, the likelihoods are

therefore proportional and sampling from one posterior is
equivalent to sampling from the other
• Two technical notes:

◦ This argument doesn’t hold if ti = aj ; the ratio would be 1/0
◦ There is a limit to the number of intervals we can choose: if

there are no events in two adjacent intervals j and j + 1, then
λj and λj+1 are not identifiable

In practice, then, it is usually wise to select cut points from
values in between the unique failure times
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Piecewise exponential model specification

• To illustrate this model in action, let’s apply it to the Pike rat
data with a single predictor, Group
• We will use the reference priors:

β ∼ N(0, τ2)
λj ∼ Γ(α, β)

where τ2 is very large and α, β very small
• To begin, we will just set K (the number of pieces in our

piecewise model) as large as possible (the number of unique
failure times); we will then explore what our results look like if
we lower K
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Results: β

Posterior density of β:
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• PM: -0.63
• 95% PI: (-1.31, 0.08)
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Results: Baseline survival
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Results: Survival for each group
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Nuisance parameters

• These confidence intervals are a nice illustration of the
advantages Bayesian inference offers with respect to handling
nuisance parameters
• As we will discuss in a future lecture, it is possible to go back
and estimate the baseline survival in a Cox model
• It is also possible to calculate confidence intervals for the
baseline survival
• However, there is not an easy way to calculate confidence
intervals for the baseline survival in a way that takes into
account uncertainty with regard to β
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Changing K
Posterior mean of baseline survival with K = 4; the plot on the
right attempts to choose the piecewise intervals a bit more
intelligently given the low hazard over the first 140 days or so
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Comparison of results for β

Est Lower Upper

Exponential -0.09 -0.75 0.56
Weibull -0.72 -1.38 -0.07
Cox -0.57 -1.25 0.11
BPE, K=29 -0.63 -1.31 0.08
BPE, K=4 -0.55 -1.24 0.13

Exponential/Weibull = Frequentist versions (survreg)
BPE = Bayesian piecewise exponential
Est = MLE / posterior mean
Lower/Upper = endpoints of 95% CI/PI
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