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Multiple parameters

• All of the results we derived last time can be extended to the
case where multiple parameters are involved; this will be
essential for studying any sort of regression model
• The score is now defined as

U(θ) = ∇`(θ|x),

where ∇`(θ|x) is the gradient of the log-likelihood, and has
elements ∂

∂θ1
`(θ|x), ∂

∂θ2
`(θ|x), . . .

• Note that
◦ The score is now a p× 1 vector; to denote this I will often

write the score vector as u
◦ Finding the MLE now involves solving the system of equations

u(θ) = 0
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Multivariate extensions

• The score still has mean zero: E(u) = 0
• The variance of the score is still the information, V(u) = I,
although the information I is now a p× p covariance matrix
• It is still true that under independence u =

∑
i ui and

I =
∑
i I i

• We again have that I = −E(∇u), where ∇u is a p× p
matrix of second derivatives with i, jth element ∂

∂θi

∂
∂θj
`(θ|x);

this matrix is referred to as the Hessian matrix
• For the results that follow, we have the added regularity
condition in the multivariate case that I is not singular (i.e.,
that I−1 exists)
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Remarks on the non-IID case

• In general, all of these extensions are straightforward to show;
however, it is worth noting that applying the central limit
theorem is somewhat more complex in the non-IID case
• In particular, it is not enough that the score have finite mean
and variance in order to apply the CLT; we must also have

I iI−1 → 0p×p

for all i
• Essentially, this means that, since each observation no longer
contributes the same information, we have an added
requirement that no single observation can dominate the
information
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Multivariate CLT results

• Assuming this is satisfied, it is still true that

I−1/2u d−→ N(0,1),

where 1 denotes the p× p identity matrix
• As before, any of I(θ0), I(θ̂), I(θ0), or I(θ̂) can be used as
the information and the result still holds
• From the above, we also have

uTI−1u d−→ χ2
p
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Score, Wald, and LR tests
As in the univariate case, we can use this CLT and various Taylor
series expansions to derive various tests of H0 : θ = θ0 by
calculating
• Score:

u(θ0)T I(θ0)−1u(θ0)

• Wald:

(θ̂ − θ0)T I(θ̂)(θ̂ − θ0)

• Likelihood ratio:

2{`(θ̂)− `(θ0)}

and comparing the test statistic to a χ2
p distribution
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Nuisance parameters

• In practice, however, testing multivariate hypotheses like this
is rare
• Instead, we typically wish to carry out inference regarding a
single parameter of interest, θj , regardless of what the other
parameters happen to be
• In this context, the other parameters θ−j are referred to as

nuisance parameters; they are not the focus of the inference,
but they must be properly accounted for in order to carry out
inference on the quantity we are interested in
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Wald approach

• Let’s begin by seeing how nuisance parameters affect the
Wald test
• The Wald approach is based on the result

θ̂ − θ∗ .∼ N(0, I(θ̂)−1),

and thus, marginally, we have

θ̂j − θ∗
j

.∼ N(0, [I(θ̂)−1]jj),

or

θ̂j − θ∗
j√

[I(θ̂)−1]jj

.∼ N(0, 1)
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Impact of nuisance parameters

• Note, however, that

θ̂j − θ∗
j√

[I(θ̂)−1]jj
6=

θ̂j − θ∗
j√

[I(θ̂)jj ]−1

• In other words, the result we obtain from the Wald approach
is not the same as simply ignoring the other parameters
• In particular, [I(θ̂)−1]jj ≥ [I(θ̂)jj ]−1; i.e., the standard error
is always larger after accounting for nuisance parameters (or
possibly stays the same)
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Inverse of a partitioned matrix

• To see this, consider a matrix M partitioned as follows:

M =

 A B

BT D


• Then

M−1 =

 A−1 + FE−1FT −FE−1

−E−1FT E−1

 ,
where E = D−BTA−1B (this is called the Schur
complement of A) and F = A−1B
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Likelihood ratio and score approaches

• The effect of nuisance parameters on the score and LR tests is
a bit more complicated
• Consider the problem of obtaining a likelihood ratio
confidence interval for θj
• If θj was the only parameter, this is simply a root-finding
problem in which we determine the values θLj and θUj where
2{`(θ̂j)− `(θj)} = χ2

1,.95
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The profile likelihood

• However, θj is not the only parameter, and in particular, if θj
was restricted to equal θLj , all the other MLEs would change
as a consequence
• In other words, evaluating `(θj) is not simple, because it

involves re-solving for θ̂−j at every value of θj that we try out
in our root-finding procedure
• The likelihood

L{θj , θ̂−j(θj)}

is known as the profile likelihood, and the re-solving procedure
is sometimes referred to as profiling
• Obtaining confidence intervals using either the score or
likelihood ratio approaches involves profiling, but the Wald
approach does not
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Availability of LRCIs

• In practice, then, the tradeoff is that it is much faster and
more convenient to obtain Wald CIs, since score and LR CIs
involve profiling; however, likelihood ratio CIs tend to be more
accurate
• Certainly, it is possible to write code that carries out profiling,
and some software packages have implemented functions to
do this for you (e.g., glm), but it is not as common as one
would wish
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Pike rat data redux

• As a practical example, let’s return to the Pike rat data from
the previous lecture, but this time fit a Gamma distribution
with shape parameter α and rate parameter λ to the data
• Since closed-form analytic solutions aren’t available for this
example, we will instead rely on numerical optimization,
derivatives and integrals
• For our purposes, we’ll consider λ to be our parameter of
interest, and α a nuisance parameter
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MLE
The MLE occurs at λ̂ = 35, α̂ = 22.2, which provides a much
better fit to the data than what we saw last time with the
exponential distribution:
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Profile vs. estimated likelihood

• To illustrate the impact of nuisance parameters upon inference
in multiparameter problems, we will compare the profile
likelihood to a simple, somewhat naïve likelihood called the
“estimated likelihood”
• To construct the estimated likelihood, we will simply plug
α̂ = 22.2 into the likelihood and treat the likelihood as a
single-parameter problem with respect to λ
• As we will see, this approach ignores uncertainty about α and
results in unrealistic conclusions
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Likelihoods
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Wald approximation to likelihood
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Confidence/posterior intervals

Nuisance parameters
Ignored Accounted for

SE 1.2 8.4
Wald (32.7, 37.4) (18.6, 51.4)
Likelihood ratio (32.7, 37.4) (21.1, 54.1)
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