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Introduction

• Previously, we constructed and plotted likelihoods and used
them informally to comment on likely values of parameters

• Our goals for today:
◦ Connect likelihood with probability, in order to quantify

coverage and type I error rates for various likelihood-based
approaches

◦ See how likelihood is also a fundamental component of
Bayesian inference

• With the exception of simple cases such as the two-sample
exponential model, exact derivations of these quantities is
typically unattainable, and we must rely on asymptotic
arguments (frequentist) or numerical integration (Bayesian)
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The score statistic

• Likelihoods are typically easier to work with on the log scale
(where products become sums); furthermore, since it is only
relative comparisons that matter with likelihoods, it is more
meaningful to work with derivatives than the likelihood itself

• Thus, we often work with the derivative of the log-likelihood,
which is known as the score, and often denoted U :

U(θ) =
d

dθ
`(θ|X)

Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 3 / 32



The score statistic
Inference

Exponential distribution example

The score statistic (cont’d)

• Note that
◦ U is a random variable, as it depends on X
◦ U is a function of θ
◦ For independent observations, the score of the entire sample is

the sum of the scores for the individual observations:

U =
∑
i

Ui

• In the derivations that follow, I will use U as shorthand for the
score statistic evaluated at the true value of the parameter,
θ∗, and U(θ) when we evaluate the score at other values of θ
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Mean

• We now consider some theoretical properties of the score

• It is worth noting that there are some regularity conditions
that f(x|θ) must meet in order for these theorems to work;
we’ll discuss these in greater detail a little later

• Theorem: E(U) = 0

• Note that maximum likelihood can therefore be viewed as a
method of moments estimator with respect to the score
statistic
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Variance

• Theorem:

V(U) = −E(U ′)

• The variance of U is given a special name in statistics: it is
called the Fisher information, the expected information, or
simply the information

• For notation, I will use I to represent the (total) Fisher
information and Ī to represent the average information:
Ī = I/n; under independence, I =

∑
i Ii, where Ii is the

information coming from the ith subject

• Like the score, the Fisher information is a function of θ,
although unlike the score, it is not random, as the random
variable X has been integrated out
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Some examples

• Example #1: For the normal mean model (treating σ2 as
known),

Ii =
1

σ2
;

this makes sense: as the data becomes noisier, less
information is contained in each observation

• In the above example, U ′ is free of both X and µ; in general
both can appear in the information, which gives rise to a few
different ways of working with the information in practice

• Example #2: For the Poisson distribution,

U ′i = −Xiλ
−2
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Observed information

• The Fisher information is therefore

I(λ) = nλ−1

• Here, taking the expectation was straightforward; in general,
it can be complicated, and for survival data analysis in
particular, typically involves the censoring mechanism

• A simpler alternative is to use the observed values of {Xi}
rather than their expectation; this is known as the observed
information and will be denoted I

• In the Poisson example,

I(λ) = λ−2
∑
i

xi
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Asymptotic distribution

We have a sum of independent terms for which we know the mean
and variance; we can therefore apply the central limit theorem:

√
n{Ū − E(U)} d−→ N(0, Ī),

or equivalently,

1√
n
U

d−→ N(0, Ī),
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Consistency and information

• Proposition: Any consistent estimator of the information can
be used in place of Ī from the previous slide, and the result
still holds

• Thus, all of the following results hold (if θ̂
P−→ θ∗):

I(θ∗)−1/2U
d−→ N(0, 1)

I(θ̂)−1/2U
d−→ N(0, 1)

I(θ∗)−1/2U
d−→ N(0, 1)

I(θ̂)−1/2U
d−→ N(0, 1)

• Other consistent estimators, such as sandwich estimators, can
also be used
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Inference: Introduction

• How can we use these results to carry out likelihood-based
inference?

• It turns out that there are three widely used frequentist
techniques for doing so: the score, Wald, and likelihood ratio
methods, as well as the Bayesian approach

• For the remainder of this lecture, we will motivate these
approaches and then apply them to exponentially distributed
survival data as an illustration of how they work
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Score test

• The score test follows most directly from our earlier
derivations

• Here, to test H0 : θ = θ0, we simply calculate

U(θ0)√
I(θ0)

and then compare it to a standard normal distribution

• As always, by inverting this test at α = 0.05, we can obtain
95% confidence intervals for θ

• Note that the score test, unlike the next two approaches we
will consider, does not even require estimating θ
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Wald approximation

• The score test was first proposed by C. R. Rao; an alternative
approach, first proposed by Abraham Wald, relies on a Taylor
series approximation to the score function about the MLE

• Proposition:

U(θ) ≈ I(θ̂)(θ̂ − θ)
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Wald result

• Thus,

I(θ̂)1/2(θ̂ − θ∗) .∼ N(0, 1), or

θ̂
.∼ N(θ∗, I(θ̂)−1)

• The MLE is therefore
◦ Approximately normal. . .
◦ . . . with mean equal to the true value of the parameter. . .
◦ . . . and variance equal to the inverse of the information

• Based on this result, we can easily construct tests and
confidence intervals for θ
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LRT approximation

• Finally, we could also consider the asymptotic distribution of
the likelihood ratio, originally derived by Samuel Wilks

• This approach also involves a Taylor series expansion, but here
we approximate the log-likelihood itself about the MLE, as
opposed to the score

• Proposition:

`(θ) ≈ `(θ̂)− 1

2
I(θ̂)(θ − θ̂)2
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LRT result

• Thus,

2{`(θ̂)− `(θ∗)} .∼ χ2
1

• Note that for α = 0.05,

exp{−χ2
1,(1−α)/2} = 0.15;

this was the basis for choosing 15% as a cutoff for L(θ)/L(θ̂)
in our likelihood intervals

• It is worth pointing out, however, that a 15% cutoff for
L(θ)/L(θ̂) is only appropriate for the single parameter case;
as we will see next time, the cutoff needs to change when
multiple unknown parameters are present
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Regularity conditions

The score, Wald, and LRT approaches derived here are all
asymptotically equivalent to each other, and all hold provided that
certain regularity conditions are met:

• θ is not a boundary parameter (otherwise we can’t take an
approximation about it)

• The information matrix I(θ∗) is finite and positive

• We can take up to third derivatives of
∫
f(x|θ) inside the

integral, at least in the neighborhood of θ∗

• The distributions {f(x|θ)} have common support and are
identifiable
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Reparameterization

• It is worth noting that the score and Wald approaches will be
affected by reparameterization

• For example, if we decide to carry out inference for the
log-hazard γ = log(λ) of an exponentially distributed
time-to-event, we will obtain different score and Wald
confidence intervals than if we constructed intervals for λ and
then transformed them

• The likelihood ratio approach, however, since it doesn’t involve
any derivatives, will be unaffected by such transformations
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Bayesian inference: Main idea

The central idea of the Bayesian framework is that if we treat θ as
a random variable, then

f(θ|x) =
f(θ)f(x|θ)

f(x)
,

where

• f(x|θ) is the likelihood

• f(θ) is the prior: Our beliefs about the plausible values of our
parameter before seeing any data

• f(θ|x) is the posterior: Our updated beliefs about the
plausible values for our parameter after seeing the data

• f(x) is a normalizing constant typically not of interest
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Priors

• To carry out Bayesian inference, therefore, we need to specify
both a prior as well as a likelihood

• Broadly speaking, there are two main ways of specifying
priors:
◦ Informative priors attempt to incorporate knowledge from

other sources such as past studies in order to realistically
capture one’s state of knowledge about θ

◦ Reference priors attempt to represent a vague, uninformed
baseline, so that all conclusions will be based on the data
alone, not from any external sources
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Inference

• Once the model has been specified, all inference is based on
the posterior f(θ|x)

• For example, we can obtain point estimates via the posterior
mean

∫
θf(θ|x) dθ or posterior mode maxθ f(θ|x)

• We can obtain 95% posterior intervals [a, b] such that∫ b
a f(θ|x) dθ = 0.95

• We can calculate tail probabilities: P(θ < 0) =
∫ 0
−∞ f(θ|x) dθ

• Note that with the Bayesian approach, no asymptotic
arguments are required, although the integrals involved may
be complicated, and thus, numerical integration methods are
typically crucial to Bayesian methodology
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Pike rat example

• To illustrate these approaches and the geometry behind them,
we’ll apply them to the Pike rat data

• For the purposes of this illustration, we’ll assume the data
follow an exponential distribution (actually a pretty bad
assumption here) under independent censoring

• Also, we’ll just look at overall survival without respect to
pretreatment regimen
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Score approach: H0 : λ = 1
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Score approach: H0 : λ = 1 (cont’d)

• So, we observe a score of d− v = 11

• We would expect the score to be zero (i.e, if λ = 1, we’d
expect to be near the top of the curve, where it’s flat)

• Still, the standard error of the slope is
√
d = 6, so our

observed score is only

Z = 11/6 = 1.84

standard deviations away from the mean, implying that we
have insufficient evidence to rule out λ = 1 (p = 0.07)
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Wald approach: H0 : λ = 1
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Wald approach: H0 : λ = 1 (cont’d)

• So, we observe a difference of λ̂− λ0 = d/v − 1 = 0.44

• We would expect this difference to be near zero if λ was truly
equal to 1

• However, the standard error θ̂ is
√
d/v = 0.24, so our

observed difference is only

Z = 0.44/0.24 = 1.84;

in this particular case, the score and Wald approaches
coincide, but this is not true in general

Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 26 / 32



The score statistic
Inference

Exponential distribution example

Likelihood ratio approach: H0 : λ = 1
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Likelihood ratio approach: H0 : λ = 1 (cont’d)

• So, we observe a difference of `(λ̂)− `(λ0) = 2.14

• Our p-value is therefore the area to the right of
2(2.14) = 4.29 for a χ2

1 distribution

• This turns out to be p = 0.04; thus, λ = 1 would be excluded
from our likelihood ratio confidence interval despite being
included in both the score and Wald intervals
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“Exact” result

• For the exponential distribution, we could carry out something
of an “exact” test based on the gamma distribution

• Here, our (one-sided) p-value would be the area to the left of
V for a gamma distribution with shape parameter d and rate
parameter λ0, although it would only be exact in the case of
type II censoring

• Nevertheless, the resulting one-sided p-value is 0.02; this is in
good agreement with the two-sided p-value of 0.04 we got
from the likelihood ratio test
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Accuracy

• This small anecdote doesn’t necessarily prove anything;
nevertheless, it is the case the the likelihood ratio approach is
typically the most accurate of the three

• To see why, consider analyzing a transformation, g(θ)

• Some transformations will make the normal approximations
for the score and Wald approaches more accurate (and some
will make them less accurate)

• Suppose there exists a “best” transformation g∗; you could
improve your score/Wald accuracy by finding and then
applying g∗, but with the likelihood ratio test, you’ve already
achieved that accuracy without even finding g∗
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Bayesian approach: Reference prior

Finally, let’s look at the Bayesian approach, first using an
uninformative flat prior:
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P(λ < 1|d, v) = 0.014
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Bayesian approach: Gamma(3,3) prior

Suppose prior studies suggested that λ was likely between 0 and 2,
and could reasonably be represented by a Gamma(3,3) distribution:
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P(λ < 1|d, v) = 0.028
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