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Introduction

• As we remarked at the outset, survival data is typically
incompletely observed (censored); as a result, estimation of
moments is not possible

• Likelihood, on the other hand, is a highly versatile tool for
quantifying whether a parameter value is consistent with the
data; this versatility makes it particularly well-suited to
survival analysis

• For this reason, virtually all methods for analyzing survival
data depend, at least to some extent, on likelihood principles

Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 2 / 34



The many virtues of likelihood
Censoring
Truncation

The virtues of likelihood

• An inevitable fact of survival data is that some failure times
are observed, while others are only partially observed

• As we will see, the concept of likelihood is well-defined in both
cases, and naturally captures the partial information contained
in partial observations

• In addition, there is a simple, natural way of combining the
information from different types of likelihood; this is essential
for combining the information from fully- and
partially-observed subjects
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Likelihood: Definition

• Let X denote observable data, and suppose we have a
probability model that relates potential values of X to an
unknown parameter θ

• Given observed data X = x, the likelihood function for θ is
defined as

L(θ|x) = P(x|θ),

although I will often just write L(θ)

• Note that this is a function of θ, not x; now that we have
observed the data, x is fixed

• Also, note that a likelihood function is not a probability
distribution – for example, it does not have to integrate to 1
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Likelihood for continuous distributions

• The definition on the previous slide implicitly assumes discrete
data; for continuous distributions, P(X = x|θ) is replaced by
f(x|θ), where f is the density function

• Why is this reasonable?

• Suppose, instead of the density, we replaced P(X = x) with
P{X ∈ (x− ε/2, x+ ε/2)}; then for small ε we have

L(θ) =

∫ x+ε/2

x−ε/2
f(u|θ)du

≈ εf(x|θ)

• Thus, at least in the limit ε→ 0, the value of ε is just an
arbitrary multiplicative constant and may be ignored
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Fully observed data

• To get a sense of how likelihood works, particularly in the
presence of censoring, let’s work with the simple survival
distribution we introduced in the previous lecture: the
exponential distribution

• In particular, our probability model is

Ti
⊥⊥∼ Exp(λ)

• Suppose we observe the following data:

t = {0.1, 0.5, 0.5, 1.6, 2.7}

Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 6 / 34



The many virtues of likelihood
Censoring
Truncation

Fully observed data (cont’d)

• The likelihood is therefore

L(λ) =
∏
i

f(ti|λ),

where f(ti|λ) = λ exp(−λti)
• Likelihoods provide only a relative measure of preference for

one parameter value vs. another

• In other words, the actual value of L(λ) is not meaningful,
but the relative quantity L(λ1)/L(λ2) is meaningful

• For this reason, in all the plots for today, I will standardize L
to have a maximum of 1
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Likelihood: Fully observed data
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Likelihood for censored data

• Now let’s consider the situation in which some of that data is
censored; in particular, suppose that the study was stopped at
time x = 1

• For {t1, t2, t3} = {0.1, 0.5, 0.5}, the likelihood remains the
same

• For t4 and t5, however, the likelihood is now

P(T > 1|λ) = S(1|λ)
= e−λ
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Likelihood for censored data (cont’d)

• Combining these likelihood is straightforward:

L(λ) =
∏
i

Li(λ),

where Li(λ) is the contribution to the likelihood from the ith
subject

• In other words,

L(λ) =

3∏
i=1

f(ti|λ)
5∏
i=4

S(1|λ)
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Likelihood with censored data
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Comments

• Thus, what we learn in the two cases is more or less
compatible, although the information is more concentrated in
the fully observed case

• This makes perfect sense; as we lose information, the range of
likely values of λ should become more broad
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Right censoring

• This type of censoring, where it is only known that T > t for
some observations, is known as right censoring

• It is by far the most common type of censoring, and will be
the primary focus of this course

• However, it is not the only of censoring possible; to see how
likelihood works for other types of partially observed data, we
will now examine various other possible types of censoring
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Left censoring: Example

• The data could be left censored, meaning that for some
observations, all we know is that T < t

• For example, suppose we were studying the age at which
teens start smoking, and suppose we start tracking students in
high school

• Any student who started smoking before they entered high
school would be left-censored
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Left censoring: Contribution to likelihood

• In this case, the contribution to the likelihood from an
observation left-censored at time t would be

Li(λ) = F (t|λ);

in the special case of the exponential distribution,

Li(λ) = 1− e−tλ

• For our hypothetical exponential data, suppose observations
1-3 were left-censored at t = 0.75
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Likelihood with left/right censored data
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Interval censoring: Example

• Yet another possibility is that the data could be interval
censored, meaning that for each time T , we only know an
interval [L,U ] such that L < T < U

• For example, suppose a patient is regularly screened for cancer
at 2-year intervals (age 60, 62, 64, . . . ), and we first detect a
tumor at age 64

• Obviously, the patient did not develop the tumor on the day
of the screening; all we know is that the tumor developed
sometime between ages 62 and 64
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Interval censoring: Example

• In this case, the contribution to the likelihood is

Li(λ) = F (U |λ)− F (L|λ);

in the special case of the exponential distribution,

Li(λ) = e−Lλ − e−Uλ

• In our exponential example, suppose we only observe the
times within intervals [0, 1], [1, 2], [2, 3], and so on
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Likelihood with interval censored data
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Double censoring

• As an alternative scenario, suppose that we only get to see
whether T < 1 or not

• This is basically a special case of interval censoring, in that we
only see whether an observation is in the interval [0, 1] or the
interval [1,∞)

• This situation is known as double censoring

• As an example, suppose that in our smoking study from
earlier, we only ask each subject once if they have tried
smoking yet, and do not follow anyone over time; the data
would be double censored
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Double censoring: Contribution to likelihood

In the doubly censored case, the contributions to the likelihood are

Li(λ) = F (1|λ) for i = 1, 2, 3

Li(λ) = S(1|λ) for i = 4, 5
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Likelihood with double censoring
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Atomic radiation example

• Let us now consider a different type of phenomenon

• Suppose we were studying the survival of individuals exposed
to radiation from the 1945 atomic bombings of Hiroshima and
Nagasaki

• Ideally, of course, we would follow people immediately from
1945 onwards; obviously, that is a bit unrealistic in this case

• Suppose we were unable to enroll people in the study and
begin to track their survival until 1950
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Atomic radiation example (cont’d)

• In this scenario, anyone who died prior to 1950 would be
missing from our sample

• This is different from left censoring, however

• In left censoring, we knew that there was a specific individual
with a failure time T < t

• In this new scenario, however, people who die prior to 1950
are never enrolled in our study; indeed, we have no direct
evidence that they exist at all
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Truncation & Likelihood

• This new scenario is known as truncation; specifically, the
case that a subject cannot be observed at all if T < t is
known as left truncation

• What is the likelihood contribution in this case?

Li(λ) = f(ti|T > u;λ)

=
f(ti|λ)
S(u|λ)

,

where u is the truncation time

• Note that each actual observation i gets inflated here
(division by a number less than 1), because each observation
implies a certain number of additional subjects that were
unable to be observed
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Truncation: Exponential example

• To get a sense of how truncation works, let’s suppose our
exponential data was truncated at u = 1

• Thus, we only have two observations: {1.6, 2.7}; we don’t
even know that subjects 1-3 exist

• Let’s look at two likelihoods: the one that adjusts for
truncation, as in the previous slide, and one that ignores the
issue of truncation and just acts as if the observed sample was
a simple random sample
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Likelihood: Truncation
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Remarks

• Adjusting for truncation does the appropriate thing
◦ Inference remains more or less centered on the correct values
◦ But the range of likely values is broader since we have less

information

• On the other hand, when we ignore truncation, our sample is
clearly biased and our inference reflects that

• Left truncation is actually quite common outside of survival
analysis as well, since there are often detection thresholds; for
example, in astronomy, we cannot observe a star unless it is
sufficiently bright
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Right truncation

• Finally, right truncation is also possible; here, we cannot
sample an observation unless T < t

• For example, suppose we are studying the time until an HIV+
patient develops AIDS, but that we only become aware of
such patients when they are actually diagnosed with AIDS

• Clearly, this sampling design will be skewed towards an
over-representation of short incubation times
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Likelihood for right truncation

• The derivation of the likelihood contribution is similar to the
left truncation case:

Li(λ) = f(ti|T < v;λ)

=
f(ti|λ)
F (v|λ)

,

where v is the right truncation time

• As an example, let’s see what happens to the likelihood from
our exponential example if survival times above 1 are
truncated

• As before, we’ll consider the ideal complete-data likelihood,
the truncation-adjusted likelihood, and the likelihood we get
from ignoring truncation
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Right truncation
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Comments

• Again, when we ignore truncation, we are stuck with the bias
of the sampling design

• In this particular case, however, the data don’t contain
enough information to perform a meaningful adjustment for
truncation – if we can’t see samples with failure times over 1,
we have no idea what λ is unless we collect a lot more data
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Summary

Type T Li

Direct observation T = ti f(ti)
Right censoring T > ti S(ti)
Left censoring T < ti F (ti)
Interval censoring li < T < ri F (ri)− F (li)
Left truncation T = ti|T > u f(ti)/S(u)
Right truncation T = ti|T < v f(ti)/F (v)
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Final remarks

• Today we have seen how to construct a likelihood in the
presence of various kinds of censoring and truncation

• Next time, we’ll go into a bit more depth about the implicit
assumptions we’re making when we do this, and think about
some situations in which they might be violated
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