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Introduction

• Today’s lecture will address the question: Overall, how well
can a given model predict survival?

• To illustrate, we’ll look at three models for the PBC data:
◦ Model 1: trt + albumin
◦ Model 2: trt + stage + hepato + f(albumin) +
log(bili)

◦ Model 3: Model 2 + 30 variables of random noise

where f() denotes the changepoint function we described in a
previous lecture

• The idea here is to see how various metrics compare when
applied to a model with decent predictive ability (model 1), a
model with very good predictive ability (model 2), and a
model in which overfitting is present (model 3)
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Linear predictors

• One simple approach to describing the amount of signal
present in a model is to describe the linear predictors

• Hazard ratios are direct functions of the linear predictors, so
by inspecting the distribution of linear predictors, we get a
sense of the extent to which our model can identify individuals
as high risk and low risk, as opposed to saying that everyone
has about the same risk

• For our three models:
◦ Model 1: SD(η̂) = 0.70
◦ Model 2: SD(η̂) = 1.31
◦ Model 3: SD(η̂) = 1.75
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Histograms

Plotting the distribution makes the same point, but also illustrates
the distribution of values:
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Survival plots

A related idea is to plot the baseline hazard ± 1 and 2 SDs:
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Introduction: R2

• It is typically desirable to be able to summarize these
illustrations into a single number that quantifies a model’s
accuracy

• For example, in linear regression we have R2, the proportion
of variance in the outcome explained by the model

• There are several ways to construct an R2-like measure for
Cox regression; the motivations typically proceed by analogy
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Derivation

• One widely used measure, the Cox-Snell R2, is based on the
change in deviance (i.e., the likelihood ratio test statistic):

∆D = 2(`1 − `0),
where `1 is the log-likelihood of the fitted model and `0 is the
log-likelihood for the null model
• For linear regression, we have

R2 = 1− RSS1

RSS0
,

where RSS1 and RSS0 are the residual sums of squares for the
fitted and null models
• For linear regression, we also have

∆D = n log
RSS0

RSS1
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Likelihood ratio R2

• This suggests

R2 = 1− exp(−∆D/n)

as a way of calculating an R2 for Cox models; note that n
here is the number of observations, not the number of events

• For our three models:
◦ Model 1: R2 = 0.18
◦ Model 2: R2 = 0.45
◦ Model 3: R2 = 0.55

• This has essentially the same interpretation as R2 in linear
regression, although the analogy isn’t perfect

• R2 is reported by summary(fit) in the survival package
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Concordance: Introduction

• An alternative idea is to quantify a model’s accuracy on the
basis of concordance

• The idea here is to consider all possible pairs of observations
and sort them into concordant and discordant groups based
on their outcomes and the model’s predictions
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Concordant pairs

• For example, suppose we observe a pair with
ti = 100, di = 1, ηi = 1 and tj = 150, dj = 1, ηj = 0

• This is a concordant pair, in that the model predicts that
subject i will die first, and this coincides with what actually
happened

• Note that we can still have concordant pairs in the presence of
censoring: ti = 100, di = 1, ηi = 1 and
tj = 150, dj = 0, ηj = 0 also form a concordant pair
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Discordant and indeterminate pairs

• Conversely, ti = 100, di = 1, ηi = 0 and
tj = 150, dj = 1, ηj = 1 would be a discordant pair: we
predict that subject j is higher risk, but they in fact survive
longer than subject i

• Not all pairs can be classified as concordant or discordant,
however; in the presence of censoring, pairs can also be
indeterminate

• For example, suppose we observe ti = 100, di = 0, ηi = 1 and
tj = 150, dj = 1, ηj = 0

• We predict that subject i dies first, but we have no way of
knowing whether that actually happened
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Scoring

• Finally, we can also have tied pairs, either because the
predictors are tied (ηi = ηj) or because the failure times are
tied (ti = tj , with di = dj = 1)

• In aggregating the results, the model scores one point for
every concordant pair and half a point for every tied pair

• This score is then divided by the total number of
non-indeterminate pairs to obtain a concordance index

• As a formula,

C =
nc + 0.5nt
nc + nd + nt

,

where nc is the number of concordant pairs, nd is the number
of discordant pairs, and nt is the number of tied pairs
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Example: Model 2

• For example, in the pbc data, there are 312 observations, so(
312
2

)
= 48, 516 pairs

• For model 2, those pairs fall into the following categories:
◦ 23,653 were concordant
◦ 5,061 were discordant
◦ 17 were tied
◦ 19,785 were indeterminate

• This gives C = 0.82

• In the pbc data, 14% of the observations are censored,
resulting in 41% of the pairs being indeterminate; to contrast,
in the VA lung data, only 7% of the observations are
censored, and only 5% of the pairs are indeterminate
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Concordance results

• By construction, C must be between 0 and 1, with 1
representing perfect agreement between model and
observation and 0.5 representing random guesses

• In survival data, C = 0.6− 0.8 is pretty common

• For our three models,
◦ Model 1: C = 0.69
◦ Model 2: C = 0.82
◦ Model 3: C = 0.85

• C is reported by summary(fit) along with R2; you can also
obtain a more detailed report from survConcordance
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Measuring prediction error

• The preceding measures quantify accuracy in some sense, but
don’t directly quantify prediction error

• So, for some fixed time t0, let us consider Ŝ(t0|x), the
model-based probabilistic prediction that an individual will
survive past time t0, along with y, the actual observation of
whether this happened (ignoring censoring for the moment)

• Two common ways of quantifying the prediction error are:

Brier(y, Ŝ(t0|x)) = {y − Ŝ(t0|x)}2

KL(y, Ŝ(t0|x)) = −{y log Ŝ(t0|x) + (1− y) log(1− Ŝ(t0|x))}

• In theory, the Kullback-Liebler score is optimal; in practice,
the two are usually pretty similar
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Accounting for censoring

• In the presence of censoring, we will not always know y; this is
especially true for large values of t0

• A common way to deal with this is to fit a Kaplan-Meier curve
to the data using censoring as the event of interest to obtain
Ĉ(t0), then up-weight the uncensored observations by 1/Ĉ(t0)

• This scheme, known as inverse probability of censoring
weighting (IPCW), produces an unbiased estimate of the true
prediction error that we would obtain in the absence of
censoring

• In principle, the estimates of Ĉ(t0) could depend on
covariates as well, although in practice, people often don’t
spend much time modeling censoring
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Kullback-Liebler loss
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Brier loss
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Overfitting

• You have probably noticed that for all of these measures,
model 2 is more accurate than model 1 (this is likely genuine)
and model 3 is more accurate than model 2 (this is not
genuine, as model 3 is just model 2 plus junk)

• This is because none of the methods we have discussed so far
address overfitting in any way

• All of these measures describe how well the model agrees with
the already observed outcomes; this is not really what we
want to know

• What we really want to know is how accurate the model is at
predicting future observations
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Optimism

• Measures of accuracy are almost always better for already
observed outcomes than they are for future predictions,
because the observed outcomes were used to build the model
in the first place

• To be more precise, let M denote a generic measure of
accuracy, y denote the observed outcomes (for survival, this
includes t and d), y∗ denote future outcomes, and f(X)
denote a model’s predictions

• Because of this phenomenon of overfitting, the quantity

M{f(X),y} −M{f(X),y∗}

is almost always positive; this quantity is known as the
optimism of the model, and it tends to be more severe for
complex models than simple models
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Shrinkage

• Unfortunately, methods for estimating optimism are
underdeveloped in survival analysis, at least with respect to
other regression models

• However, one useful approach is the shrinkage heuristic
developed by van Houwelingen and le Cessie (1990)

• Those authors developed the estimator for the shrinkage
coefficient, γ:

γ̂ = 1− df

LR
,

where df denotes the degrees of freedom of the model
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Calibration

• The idea is that the model’s predictions, {η̂i}, should be
shrunken towards zero by γ:

η̃i = γ̂ηi

• This is referred to as calibration; the idea is that the model’s
predictions need to be re-calibrated in order to account for the
inevitable optimism that any model possesses

• Remark: This is not the only way to estimate γ; for example, a
few authors have proposed estimators based on bootstrapping
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Simulation

• To illustrate how this works, let’s simulate some survival data
from an exponential model (for simplicity, all observations are
uncensored)

• In the generating model, there are 2 predictors for which a 1
SD change yields a hazard ratio of 2, and 28 predictors that
have no effect on hazard

• Since this is simulated data, we can check the agreement
between {η̂i} and the true {ηi} values for both the original
and shrunken (calibrated) versions (in this example, γ̂ = 0.87)
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Calibrated estimates
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Calibration results

• For our models:
◦ Model 1: γ̂ = 0.97
◦ Model 2: γ̂ = 0.97
◦ Model 3: γ̂ = 0.86

• This makes sense: models 1 and 2 are fairly parsimonious, and
we shouldn’t have to shrink their estimates much, while model
3 deserves some shrinkage

• The calibrated versions of SD(η):
◦ Model 1: SD(η̃) = 0.68
◦ Model 2: SD(η̃) = 1.28
◦ Model 3: SD(η̃) = 1.50
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Sample splitting

• An alternative approach to addressing overfitting is to split
the sample into two parts, using one for fitting the model and
the other for assessing accuracy

• This approach is very common outside of time-to-event
analysis, and can be done in a variety of ways: single
validation, cross-validation, bootstrapping

• There are, however, some specific challenges that can arise
when using these approaches with Cox models, as the partial
likelihood-based deviance is entirely based on relative, as
opposed to absolute, risk
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Leave one out cross validation

• For example, we can fit the data to {X, t,d}−i and calculate
the linear predictor η̂i = xT

i β̂−i, but that linear predictor
quantifies risk relative to the observations in {X, t,d}−i;
upon observing ti and di, how do we evaluate whether this
was a good prediction or not?

• We can’t use the Cox partial likelihood: with only one
observation in the risk set, the likelihood would be 1
regardless of η̂i

• A variety of solutions have been proposed (one, for example,
would be to just use the KL score instead), but this is still an
open research question and papers continue to be published
on the topic of quantifying predictive accuracy for Cox models
without bias from overfitting
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