Proportional hazards regression

Patrick Breheny

October 2

The model Solving for the MLE Inference

Introduction

- Today we will begin discussing regression models for time-to-event data
- There are a number of ways one could think about modeling the dependency between the time to an event and the factors that might affect it
- The two most common approaches are known as *proportional hazards models* and *accelerated failure time models*

The model Solving for the MLE Inference

Proportional hazards

- We'll start with proportional hazards models
- As the name implies, the idea here is to model the hazard function directly:

$$\lambda_i(t) = \lambda(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Here, the covariates act in a multiplicative manner upon the hazard function; note that the exponential function ensures that $\lambda_i(t)$ is always positive
- In this model, the hazard function for the *i*th subject always has the same general shape $\lambda(t)$, but can be, say, doubled or halved depending on a patient's risk factors

The model Solving for the MLE Inference

Exponential regression

- In general, any hazard function can be used; today, we'll restrict attention to the constant hazard for the sake of simplicity
- Thus, the exponential regression model is:

$$\lambda_i(t) = \lambda \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

• Note that if \mathbf{x}_i contains an intercept term, we will have a problem with identifiability – there is no way to distinguish β_0 and λ

The model Solving for the MLE Inference

Identifiability

- For a variety of reasons (convenience, simplicity, numerical stability, accuracy of approximate inferential procedures), it is preferable to estimate β_0 rather than λ , so this is the parameterization we will use
- Of course, having estimated β_0 , one can easily obtain estimates and confidence intervals for λ through the transformation $\lambda = \exp(\beta_0)$
- In today's lecture notes, we will discuss how to estimate the regression coefficients and carry out inference concerning them, and then illustrate these results using the pbc data

Solving a nonlinear system of equations

- Maximum likelihood estimation of β is complicated in exponential regression by the need to solve a nonlinear system of equations
- This cannot be done in closed form; some sort of iterative procedure is required
- The basic idea is to construct a linear approximation to the nonlinear system of equations, solve for $\hat{\beta}$, re-approximate, and so on until convergence (this is known as the *Newton-Raphson algorithm*)
- We will begin by working out the score and Hessian with respect to the *linear predictor*, $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Solving for the MLE

Log-likelihood, score, and Hessian

• Under independent censoring and assuming $\widetilde{T}_i | \mathbf{x}_i \sim \operatorname{Exp}(\lambda_i)$, the log-likelihood contribution of the *i*th subject in exponential regression is

$$\ell_i(\eta_i) = d_i \eta_i - t_i e^{\eta_i}$$

• The first and second derivatives with respect to the linear predictors are therefore

$$\frac{\partial \ell}{\partial \eta_i} = d_i - t_i e^{\eta_i}$$
$$\frac{\partial^2 \ell}{\partial \eta_i^2} = -t_i e^{\eta_i}$$

The model Solving for the MLE Inference

Vector/matrix versions

• Letting μ denote the vector with *i*th element $t_i e^{\eta_i}$ and \mathbf{W} denote the diagonal matrix with *i*th diagonal element $t_i e^{\eta_i}$, we can express the system of derivatives as

$$egin{aligned}
abla_{oldsymbol{\eta}}\ell &= \mathbf{d} - oldsymbol{\mu} \
abla_{oldsymbol{\eta}}^2\ell &= -\mathbf{W} \end{aligned}$$

• As we remarked earlier, solving for the values of β that satisfy the score equations is complicated because μ is nonlinear; thus, consider the Taylor series approximation about $\tilde{\eta}$

$$\begin{split} \nabla_{\boldsymbol{\eta}} \ell(\boldsymbol{\eta}) &\approx \nabla_{\boldsymbol{\eta}} \ell(\tilde{\boldsymbol{\eta}}) + \nabla_{\boldsymbol{\eta}}^2 \ell(\tilde{\boldsymbol{\eta}}) (\boldsymbol{\eta} - \tilde{\boldsymbol{\eta}}) \\ &= \mathbf{d} - \boldsymbol{\mu} + \mathbf{W}(\tilde{\boldsymbol{\eta}} - \boldsymbol{\eta}) \end{split}$$

where μ and ${f W}$ are fixed at $ilde{\eta}$

Solving for β

- All the preceding is only a means to an end, however we're actually estimating β , not η
- Substituting this expression into the previous equation and solving for β , we obtain

$$\widehat{oldsymbol{eta}} \leftarrow (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{d} - oldsymbol{\mu}) + \widetilde{oldsymbol{eta}}$$

- Again, this is an iterative process, which means that this is not an exact solution for $\hat{\beta}$; rather, we must solve for $\hat{\beta}$, recompute μ and \mathbf{W} , re-solve for $\hat{\beta}$, and so on
- The Newton-Raphson algorithm will converge to the MLE (although this is not absolutely guaranteed) provided that the likelihood is log-concave and coercive, both of which (typically) hold for exponential regression

The model Solving for the MLE Inference

Newton-Raphson animation

The model Solving for the MLE Inference

Crude R code

• Below is some crude R code providing an implementation of this algorithm

```
b <- rep(0, ncol(X))
for (i in 1:20) {
    eta <- as.numeric(X%*%b)
    mu <- t*exp(eta)
    W <- diag(t*exp(eta))
    b <- solve(t(X) %*% W %*% X) %*% t(X) %*% (d-mu) + b
}</pre>
```

• This is crude in the sense that it isn't as efficient as it could be and in that it assumes convergence will occur in 20 iterations; a better algorithm would check for convergence by examining whether $\hat{\beta}$ has stopped changing

The model Solving for the MLE Inference

Wald approach

- Since $\widehat{\beta}$ is the MLE, our derivation of the Wald results from earlier means that

$$\widehat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\boldsymbol{\beta}, \mathbf{I}^{-1}\right);$$

we just have to work out the information matrix with respect to $\boldsymbol{\beta}$

• Applying the chain rule, we have

$$\widehat{\boldsymbol{eta}} \sim \mathrm{N}\left(\boldsymbol{eta}, (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1}\right)$$

• It is very easy, therefore, to construct confidence intervals for β_j with $\hat{\beta}_j \pm z_{1-\alpha/2} SE_j$, where $SE_j = \sqrt{(\mathbf{X}^T \mathbf{W} \mathbf{X})_{jj}^{-1}}$

The model Solving for the MLE Inference

Likelihood ratio approach

- One could also, in principle, construct likelihood ratio confidence intervals
- As we remarked last time, this would involve profiling; i.e., calculating the profile likelihood $L(\beta_j, \widehat{\beta}_{-j}(\beta_j))$ over a range of values for β_j
- Unfortunately, you would need to write your own software to do this; the survival package does not offer this as an option

pbc data: Setup

- To illustrate, let's fit an exponential regression model to the pbc data, and include the following four factors as predictors:
 - trt: Treatment (D-penicillamine, placebo)
 - stage: Histologic stage of disease (1, 2, 3, 4)
 - hepato: Presence of hepatomegaly (enlarged liver)
 - bili: Serum bilirunbin (mg/dl)
- We can fit this model using our crude R code (the survival package does have a function for exponential regression, but its setup doesn't exactly match ours today, so I'm postponing coverage of the function to next week)

pbc example Diagnostics

Results

Interpretation of coefficients

- As in other regression models, the interpretation of the regression coefficients involves the effect of changing one factor while all others remain the same
- Consider a hypothetical comparison between two individuals whose explanatory variables are the same, except for variable j, where it differs by $\delta_j = x_{1j} x_{2j}$:

$$\frac{\lambda_1(t)}{\lambda_2(t)} = \exp(\delta_j \beta_j)$$

Hazard ratios

- Note that for any proportional hazard model, $\lambda_1(t)/\lambda_2(t)$ is a constant with respect to time
- This constant is known as the *hazard ratio*, and typically abbreviated HR, although some authors refer to it as the *relative risk* (RR)
- Thus, the interpretation of a regression coefficient in a proportional hazards model is that $e^{\delta\beta}$ is the hazard ratio for a δ -unit change in that covariate
- In particular, $\mathrm{HR}=e^{\beta}$ for a one-unit change
- So, for stage in our pbc example, $HR = e^{0.564} = 1.76$; a one-unit change in stage increases a patient's hazard by 76%

pbc example Diagnostics

Results (hazard ratios; $\delta_{\text{bili}} = 5$)

Wald, Score, and Likelihood ratio intervals

- As in the previous lecture, note that the Wald CIs account for the uncertainty with respect to the other parameters:
 - Wald SE is $\sqrt{(\mathbf{I}^{-1})_{jj}} = 0.126$

$$\circ~$$
 Naïve SE is $\sqrt{(\mathbf{I}_{jj})^{-1}}=0.024$

• Score and LR confidence intervals require profiling; our next homework assignment asks you to calculate these intervals and compare them to the Wald interval

xponential regression pbc example Example Diagnostics

Predicted survival: Some examples

We can also predict survival curves at the individual level

Exponential regression pbc exampl Example Diagnostics

Diagnostic plot (original scale)

As a diagnostic plot to check whether the exponential distribution seems reasonable, we can plot the Kaplan-Meier estimate against the best exponential fit:

Example

Diagnostics

Diagnostic plot (linear)

Alternatively, since the exponential model implies $-\log S(t) = \lambda t$, we can obtain a linear version of the diagnostic plot:

Limitations

- These diagnostic plots, although useful for identifying gross lack of fit, have some clear limitations
- The main limitation is that our model does not assume $\widetilde{T}_i \sim \text{Exp}(\lambda)$, but rather that $\widetilde{T}_i | \mathbf{x}_i \sim \text{Exp}(\lambda_i)$
- Thus, we may see a departure from linearity in the plot on the previous page, but it doesn't necessarily imply a violation of model assumptions

Exponential regression pbo Example Dia

pbc example Diagnostics

Diagnostic plot (simulated)

For example, consider this simulated diagnostic plot for two groups, each independently following an exponential distribution, but with different rate parameters:

Comments

- Nevertheless, these diagnostic plots are generally useful provided that the covariates do not have an overwhelming effect on survival (covariates do not "dominate")
- If any covariates do have overwhelming effects, one may considering stratifying the diagnostic plots
- For example, we may wish to construct separate diagnostic plots for each stage in our pbc example

Exponential regression pbo Example Dia

- In linear regression, of course, we don't face these issues because we can directly examine residuals
- In survival analysis, however, residuals are more complicated in that some of them will be censored
- There are ways of dealing with this, and of obtaining residuals for time-to-event regression models, but we will postpone this discussion for a later lecture