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Introduction

• Today we will begin discussing regression models for
time-to-event data

• There are a number of ways one could think about modeling
the dependency between the time to an event and the factors
that might affect it

• The two most common approaches are known as proportional
hazards models and accelerated failure time models
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Proportional hazards

• We’ll start with proportional hazards models

• As the name implies, the idea here is to model the hazard
function directly:

λi(t) = λ(t) exp(xTi β)

• Here, the covariates act in a multiplicative manner upon the
hazard function; note that the exponential function ensures
that λi(t) is always positive

• In this model, the hazard function for the ith subject always
has the same general shape λ(t), but can be, say, doubled or
halved depending on a patient’s risk factors
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Exponential regression

• In general, any hazard function can be used; today, we’ll
restrict attention to the constant hazard for the sake of
simplicity

• Thus, the exponential regression model is:

λi(t) = λ exp(xTi β)

• Note that if xi contains an intercept term, we will have a
problem with identifiability – there is no way to distinguish β0
and λ
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Identifiability

• For a variety of reasons (convenience, simplicity, numerical
stability, accuracy of approximate inferential procedures), it is
preferable to estimate β0 rather than λ, so this is the
parameterization we will use

• Of course, having estimated β0, one can easily obtain
estimates and confidence intervals for λ through the
transformation λ = exp(β0)

• In today’s lecture notes, we will discuss how to estimate the
regression coefficients and carry out inference concerning
them, and then illustrate these results using the pbc data
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Solving a nonlinear system of equations

• Maximum likelihood estimation of β is complicated in
exponential regression by the need to solve a nonlinear system
of equations

• This cannot be done in closed form; some sort of iterative
procedure is required

• The basic idea is to construct a linear approximation to the
nonlinear system of equations, solve for β̂, re-approximate,
and so on until convergence (this is known as the
Newton-Raphson algorithm)

• We will begin by working out the score and Hessian with
respect to the linear predictor, ηi = xTi β
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Log-likelihood, score, and Hessian

• Under independent censoring and assuming T̃i|xi ∼ Exp(λi),
the log-likelihood contribution of the ith subject in
exponential regression is

`i(ηi) = diηi − tieηi

• The first and second derivatives with respect to the linear
predictors are therefore

∂`

∂ηi
= di − tieηi

∂2`

∂η2i
= −tieηi
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Vector/matrix versions

• Letting µ denote the vector with ith element tie
ηi and W

denote the diagonal matrix with ith diagonal element tie
ηi ,

we can express the system of derivatives as

∇η` = d− µ

∇2
η` = −W

• As we remarked earlier, solving for the values of β that satisfy
the score equations is complicated because µ is nonlinear;
thus, consider the Taylor series approximation about η̃

∇η`(η) ≈ ∇η`(η̃) +∇2
η`(η̃)(η − η̃)

= d− µ+W(η̃ − η)

where µ and W are fixed at η̃
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Solving for β

• All the preceding is only a means to an end, however – we’re
actually estimating β, not η

• Substituting this expression into the previous equation and
solving for β, we obtain

β̂ ← (XTWX)−1XT (d− µ) + β̃

• Again, this is an iterative process, which means that this is
not an exact solution for β̂; rather, we must solve for β̂,
recompute µ and W, re-solve for β̂, and so on

• The Newton-Raphson algorithm will converge to the MLE
(although this is not absolutely guaranteed) provided that the
likelihood is log-concave and coercive, both of which
(typically) hold for exponential regression
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Newton-Raphson animation
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Crude R code

• Below is some crude R code providing an implementation of
this algorithm

b <- rep(0, ncol(X))

for (i in 1:20) {

eta <- as.numeric(X%*%b)

mu <- t*exp(eta)

W <- diag(t*exp(eta))

b <- solve(t(X) %*% W %*% X) %*% t(X) %*% (d-mu) + b

}

• This is crude in the sense that it isn’t as efficient as it could
be and in that it assumes convergence will occur in 20
iterations; a better algorithm would check for convergence by
examining whether β̂ has stopped changing
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Wald approach

• Since β̂ is the MLE, our derivation of the Wald results from
earlier means that

β̂
.∼ N

(
β, I−1

)
;

we just have to work out the information matrix with respect
to β

• Applying the chain rule, we have

β̂
.∼ N

(
β, (XTWX)−1

)
• It is very easy, therefore, to construct confidence intervals for

βj with β̂j ± z1−α/2SEj , where SEj =
√
(XTWX)−1

jj
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Likelihood ratio approach

• One could also, in principle, construct likelihood ratio
confidence intervals

• As we remarked last time, this would involve profiling; i.e.,
calculating the profile likelihood L(βj , β̂−j(βj)) over a range
of values for βj

• Unfortunately, you would need to write your own software to
do this; the survival package does not offer this as an option

Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 13 / 26



Exponential regression
Example

pbc example
Diagnostics

pbc data: Setup

• To illustrate, let’s fit an exponential regression model to the
pbc data, and include the following four factors as predictors:
◦ trt: Treatment (D-penicillamine, placebo)
◦ stage: Histologic stage of disease (1, 2, 3, 4)
◦ hepato: Presence of hepatomegaly (enlarged liver)
◦ bili: Serum bilirunbin (mg/dl)

• We can fit this model using our crude R code (the survival

package does have a function for exponential regression, but
its setup doesn’t exactly match ours today, so I’m postponing
coverage of the function to next week)
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Results
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Interpretation of coefficients

• As in other regression models, the interpretation of the
regression coefficients involves the effect of changing one
factor while all others remain the same

• Consider a hypothetical comparison between two individuals
whose explanatory variables are the same, except for variable
j, where it differs by δj = x1j − x2j :

λ1(t)

λ2(t)
= exp(δjβj)
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Hazard ratios

• Note that for any proportional hazard model, λ1(t)/λ2(t) is a
constant with respect to time

• This constant is known as the hazard ratio, and typically
abbreviated HR, although some authors refer to it as the
relative risk (RR)

• Thus, the interpretation of a regression coefficient in a
proportional hazards model is that eδβ is the hazard ratio for a
δ-unit change in that covariate

• In particular, HR = eβ for a one-unit change

• So, for stage in our pbc example, HR = e0.564 = 1.76; a
one-unit change in stage increases a patient’s hazard by 76%
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Results (hazard ratios; δbili = 5)
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Wald, Score, and Likelihood ratio intervals

• As in the previous lecture, note that the Wald CIs account for
the uncertainty with respect to the other parameters:
◦ Wald SE is

√
(I−1)jj = 0.126

◦ Näıve SE is
√

(Ijj)−1 = 0.024

• Score and LR confidence intervals require profiling; our next
homework assignment asks you to calculate these intervals
and compare them to the Wald interval
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Predicted survival: Some examples

We can also predict survival curves at the individual level
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Diagnostic plot (original scale)

As a diagnostic plot to check whether the exponential distribution
seems reasonable, we can plot the Kaplan-Meier estimate against
the best exponential fit:
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Diagnostic plot (linear)

Alternatively, since the exponential model implies − logS(t) = λt,
we can obtain a linear version of the diagnostic plot:
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Limitations

• These diagnostic plots, although useful for identifying gross
lack of fit, have some clear limitations

• The main limitation is that our model does not assume
T̃i ∼ Exp(λ), but rather that T̃i|xi ∼ Exp(λi)

• Thus, we may see a departure from linearity in the plot on the
previous page, but it doesn’t necessarily imply a violation of
model assumptions
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Diagnostic plot (simulated)

For example, consider this simulated diagnostic plot for two
groups, each independently following an exponential distribution,
but with different rate parameters:
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Comments

• Nevertheless, these diagnostic plots are generally useful
provided that the covariates do not have an overwhelming
effect on survival (covariates do not “dominate”)

• If any covariates do have overwhelming effects, one may
considering stratifying the diagnostic plots

• For example, we may wish to construct separate diagnostic
plots for each stage in our pbc example
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Residuals?

• In linear regression, of course, we don’t face these issues
because we can directly examine residuals

• In survival analysis, however, residuals are more complicated
in that some of them will be censored

• There are ways of dealing with this, and of obtaining residuals
for time-to-event regression models, but we will postpone this
discussion for a later lecture
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