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Introduction

• Last week, we discussed point and interval estimation for
survival curves

• By visually comparing the curves and bands, one can get a
rough sense of whether there is a statistically significant
difference the survival of two groups

• Clearly, however, it would also be nice to test for a difference
between two groups; this is our subject for today
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Setup

We will use the same notation as last week’s Kaplan-Meier
estimator lectures, with straightforward extensions to
accommodate multiple groups:

• Let 0 = t0 < t1 < t2 < · · · < tJ < tJ+1 =∞ denote the
pooled failure times (times at which any subject in either
group was observed to fail)

• Let d1j denote the number of failures at time tj in group 1,
d2j the number of failures at time tj in group 2, and dj
denote the total number of failures at time tj across all groups

• And so on for n1j , c1j , . . .
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Table for time tj

Consider the following contingency table for all subjects in the risk
set at time tj :

Group 1 Group 2 Total

Deaths d1j d2j dj
Survivors n1j − d1j n2j − d2j nj − dj
Total n1j n2j nj
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Hypergeometric distribution

• Conditional on the margins of the table on the previous slide,
under the null hypothesis that S1 = S2 the random variable
D1j follows a hypergeometric distribution with mean

e1j = n1j
dj
nj

and variance

v1j = n1j
dj
nj

nj − dj
nj

nj − n1j
nj − 1

• However, we still need some way of combining information
across all the failure times
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Combining over failure times

• The sum
∑
D1j does not follow any known distribution;

however, since each wj = d1j − e1j follows an approximate
normal distribution with zero mean and variance vj = v1j
under the null,

W
.∼ N(0, V ),

where W =
∑

j wj and V =
∑

j vj , provided that failures are
conditionally independent

• Or equivalently,

W 2

V
=

(∑
j wj

)2∑
j vj

.∼ χ2
1
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Remarks

• This test is known as the log-rank test

• The idea behind the test is essentially the same as that of the
Cochran-Mantel-Haenszel test in categorical data analysis,
with time as the stratification variable

• The log-rank test is the most widely used test for comparing
two survival time distributions, in part because the test
statistic has a simple “observed - expected” form

• The log-rank test is particularly powerful when the ratio
between the two hazard functions being compared is constant
across time
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Extension to multiple groups

• It is fairly straightforward to extend the log-rank test to
compare an arbitrary number of groups

• Suppose we have K + 1 groups, with one group arbitrarily
chosen as the reference group

• Let wj denote the vector (d1j − e1j , . . . , dKj − eKj)

• The conditional covariance matrix of wj , Vj , has diagonal
elements as given previously and off-diagonal elements

(Vj)ik = −
nijnkjdj(nj − dj)

n2j (nj − 1)
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Extension to multiple groups (cont’d)

• Then, letting w =
∑

j wj and V =
∑

j Vj , we have

wTV−1w
.∼ χ2

K

• Note that in this setup, we have K + 1 groups but only K
independent counts in the contingency table because we are
conditioning on the margins, and therefore only K degrees of
freedom

• An alternative (and more elegant, at least in my opinion) way
of dealing with this would be to include all groups in the test
statistic, but use the generalized inverse of V to construct the
test statistic
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GVHD data

Recall our GVHD data from last week:
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Observed vs. Expected

• The survival curves suggest a difference between the two
groups, at least for day 20 onwards, but the confidence
intervals are fairly wide at that point and it isn’t obvious
whether the difference could be explained by chance alone

• For the MTX + CSP group, under the null we would expect∑
j

e1j = 10.2

subjects to experience GVHD

• In the actual experiment, however, only 5 subjects developed
GVHD in the MTX+CSP group

• Conversely, we would expect 9.8 subjects to develop GVHD in
the MTX alone group, but 15 subjects did
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Log-rank test: Results

• Furthermore,

V =
∑
j

v1j = 4.92

• Thus, what we observed was 2.34 standard deviations away
from what we would expect, which yields a two-sided p-value
of 2Φ(−2.34) = 0.02

• Or equivalently,

(5− 10.2)2

4.92
= 5.49

P{χ2
1 > 5.49} = 0.02
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survdiff

The survival package provides the function survdiff to carry
out log-rank tests for differences between survival curves; its syntax
is more or less identical to survfit:

> survdiff(Surv(Time, Status) ~ Group, Data)

N Observed Expected (O-E)^2/E (O-E)^2/V

Group=MTX 32 15 9.8 2.75 5.49

Group=MTX+CSP 32 5 10.2 2.65 5.49

Chisq= 5.5 on 1 degrees of freedom, p= 0.0192
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PBC data

• Let’s also try out a multi-sample comparison

• In your homework, I asked you to look at the pbc data in R, a
study of progression-free survival in patients with primary
biliary cirrhosis

• Specifically, you calculated survival curves for these patients,
broken down by stage (1-4); let’s now carry out a formal test
of whether the observed differences could be due to chance
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PBC data: Results

> survdiff(Surv(time, status!=0) ~ stage, pbc)

n=412, 6 observations deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V

stage=1 21 2 13.3 9.58 10.41

stage=2 92 28 51.4 10.66 15.05

stage=3 155 58 71.2 2.44 4.02

stage=4 144 94 46.1 49.69 67.58

Chisq= 73.9 on 3 degrees of freedom, p= 6.66e-16

The results agree with what we would have expected: many more
failures than would be expected among stage 4 patients, fewer
failures in stages 1, 2, and 3, and a highly significant result
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Remarks

• It is worth noting that, unlike in the two-sample case, one
cannot reconstruct the test statistic from the table provided,
as it depends on covariances

• To calculate the test statistic “by hand”, we would need:

> lrt <- survdiff(Surv(time, status!=0) ~ stage, pbc)

> w <- lrt$obs[1:3] - lrt$exp[1:3]

> V <- lrt$var[1:3, 1:3]

> t(w) %*% solve(V) %*% w

[,1]

[1,] 73.92355

• As remarked earlier, you get the same result regardless of
which group you leave out, or if you include all groups but
take the generalized inverse of V
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Weighted log-rank tests

• The log-rank test statistic is of the form(∑
j wj

)2∑
j vj

• It is not obvious, however, that each time point should receive
the same weight when we construct this linear combination

• One natural extension, then, is the family of weighted
log-rank tests, which have the form(∑

j αjwj

)2∑
j α

2
jvj

,

where {αj} are weights chosen to emphasize or deemphasize
various time points
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The Gehan and Peto-Prentice tests

• For example, one reasonable weighting scheme would be to
weigh time points by the number at risk at time tj :

αj = nj ;

This is known as the Gehan, Gehan-Breslow, or
Gehan-Wilcoxon test

• A somewhat similar idea is to weigh time points according to
the (pooled) survival estimate:

αj = Ŝ(tj);

This is known as the Peto-Prentice, or Peto-Peto, test

• Note that both tests place more emphasis on earlier failure
times compared to the log-rank test
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Example: GVHD data

• The survdiff function has an option, rho, that can be set to
1 in order to perform the Peto-Prentice test

• For example, returning to the GVHD data,

> survdiff(Surv(Time, Status) ~ Group, Data, rho=1)

N Observed Expected (O-E)^2/E (O-E)^2/V

Group=MTX 32 12.38 8.40 1.88 4.37

Group=MTX+CSP 32 4.65 8.63 1.83 4.37

Chisq= 4.4 on 1 degrees of freedom, p= 0.0366

• The fact that we get a larger p-value compared to the
log-rank test makes sense: for the GVHD study, the
differences between the two survival curves occurred mainly at
later failure times
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