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Introduction

• The likelihood construction techniques that we introduced last
week can be used to estimate the survival/hazard/distribution
functions for any parametric model of survival time

• As I have alluded to in the past, however, the distributions of
survival times are often difficult to parameterize

• Our goal for today is to develop nonparametric estimates for
these distributions, with a particular emphasis on the survival
function S(t)
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Empirical survival function

• In the absence of censoring, estimating S(t) would be
straightforward

• We could simply use the empirical survival function

Ŝ(t) =
#{i : ti > t}

n

• With censored observations, however, we don’t always know
whether T̃i > t or not
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Nonparametric likelihood

• As we discussed last week, likelihood provides a natural way
to proceed with inference in the presence of censoring

• The likelihood of a survival function S given observed,
right-censored data is

L(S|Data) =

n∏
i=1

P(Ti = ti)
diP(Ti > ti)

1−di

=
n∏

i=1

{S(t−i )− S(ti)}
diS(ti)

1−di

• This expression is a bit different from the likelihoods we saw
last week
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Nonparametric likelihood (cont’d)

• In particular, it is not the likelihood of a parameter, but of a
generic survival function S

• The set of possible values we must consider is not just an
interval of parameter values, but rather the entire set of all
possible survival functions

• This is the basic idea of nonparametric statistics: rather than
specify a parametric form for S(·|θ) and carry out inference
concerning θ, we adopt procedures that deal directly with S
itself
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Estimating S

• For today, we will focus on the question of estimating S

• A natural estimate is to choose the value of S that maximizes
L(S); this is the nonparametric maximum likelihood estimator

• In other words, we must determine, out of the set of all
possible survival functions, which function maximizes L(S)
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Estimating S: First steps

• This might sound daunting, but it turns out to be easier than
you would think

• Let’s begin by making two observations that greatly restrict
the possible values of S that we must consider
◦ In order to maximize the likelihood, S must put positive point

mass at any time t at which a subject was observed to fail
(otherwise S(t−i )− S(ti) would be zero)

◦ In order to maximize the likelihood, S cannot put any
probability at times other than those at which subjects were
observed to fail (redistributing that probability to next failure
time would always increase the likelihood)

• Thus, we really only need to determine how much point mass
to put at each observed failure time
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Rewriting in terms of observed failure times

• Since the observed failure times are so critical here, let’s
rewrite the problem in terms of the observed failure times
0 = t0 < t1 < t2 < · · · < tJ < tJ+1 =∞, and let

dj ≡ # of failures at time tj

nj ≡ # at risk at time t−j

cj ≡ # censored during the interval [tj , tj+1)

• In terms of this new notation, we can rewrite the earlier
likelihood as

L(S) =

J∏
j=1

{S(t−j )− S(tj)}
djS(tj)

cj
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Solving for λ̂

• Next, let’s rewrite the likelihood in terms of the hazard
components, λ̂1, . . . , λ̂J

• Doing so yields

L(λ) =
∏
j

{
λ
dj
j

j−1∏
k=1

(1− λk)dj
j∏

k=1

(1− λk)cj
}

=
∏
j

λ
dj
j (1− λj)nj−dj
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Solving for λ̂ (cont’d)

• Thus, the joint likelihood for λ consists of j separate
components in which λj appears only in the jth component

• Furthermore, each component is equivalent to a binomial
likelihood, so

λ̂j = dj/nj

and

Ŝ(t) =
∏
tj≤t

(1− λ̂j)

=
∏
tj≤t

nj − dj
nj
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Kaplan-Meier estimator

• The estimator on the previous slide was originally proposed by
Kaplan and Meier in 1958, and is known as the Kaplan-Meier
estimator (or product limit estimator, which is the name
Kaplan and Meier proposed)

• This approach has come to be – by far – the most common
way of estimating and summarizing survival curves

• The approach is so widespread, in fact, that Kaplan & Meier’s
original paper is the most highly cited paper in the history of
statistics, and the 11th most highly cited paper in all of
science
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GVHD study

• To illustrate how Kaplan-Meier estimation works, let’s apply it
to a study involving graft-versus-host disease (GVHD) in bone
marrow transplant recipients

• The patients in the study have a condition called severe
aplastic anemia, in which the bone marrow produces an
insufficient number of new blood cells

• These patients were given a bone marrow transplant from a
compatible family member

• A serious complication of bone marrow transplantation is
GVHD, in which the immune cells produced by the new bone
marrow recognize the recipient as a foreign body and mount
an attack
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GVHD study (cont’d)

• To ward off GVHD, the recipients were randomized to receive
one of two drug combinations:
◦ Methotrexate (MTX)
◦ Methotrexate and cyclosporine (MTX + CSP)

• The goal of the study is to determine whether treatment
affected the occurrence of GVHD and if so, which treatment
is superior
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Data (by subject)

• Like elsewhere in statistics, survival data is typically organized
with each individual subject occupying a row and the outcome
and various covariates occupying the columns of the data set

• One difference, however, is that in survival analysis, two
columns are required to denote the outcome (ti and di):

Group Time Status

MTX+CSP 3 No
MTX+CSP 8 Yes
MTX+CSP 10 Yes
MTX+CSP 12 No
MTX+CSP 16 Yes

. . .
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Data (by time)

As we saw in the derivation of the KM estimator, however, for the
purposes of analysis it is often helpful to re-express the data in
terms of the observed failure times:

Therapy Time GVHD

MTX+CSP 3 No
MTX+CSP 8 Yes
MTX+CSP 10 Yes
MTX+CSP 12 No
MTX+CSP 16 Yes

. . .

t n(t) d(t)

0 32 0
3 32 0
4 31 0
8 31 1
9 30 0

10 30 1
16 28 1

. . .
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MTX alone group

In the MTX alone group,

Therapy Time GVHD

MTX 9 Yes
MTX 11 Yes
MTX 12 Yes
MTX 20 Yes
MTX 20 Yes
MTX 22 Yes
MTX 25 Yes
MTX 25 Yes
MTX 25 No
MTX 28 Yes
MTX 28 Yes

. . .

t n(t) d(t)

0 32 0
9 32 1

11 31 1
12 30 1
20 29 2
22 27 1
25 26 2
28 23 2

. . .

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 16 / 29



Kaplan-Meier estimate: Derivation
Kaplan-Meier estimate: Example

GVHD data
R commands

Ŝ(t): MTX + CSP

t n(t) d(t)

0 32 0
8 31 1

10 30 1
16 28 1

. . .

t n(t)−d(t)
n(t)

Ŝ(t)

0 1 1
8 30/31 .968

10 29/30 .935
16 27/28 .902

. . .
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Ŝ(t): MTX alone

In the MTX group,

t n(t) d(t)

0 32 0
9 32 1

11 31 1
12 30 1
20 29 2
22 27 1
25 26 2
28 23 2

. . .

t n(t)−d(t)
n(t)

Ŝ(t)

0 1 1
9 31/32 .969

11 30/31 .938
12 29/30 .906
20 27/29 .844
22 26/27 .812
25 24/26 .750
28 21/23 .685

. . .
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Kaplan-Meier curve: GVHD

The result of all these calculations is usually summarized in a plot
called a Kaplan-Meier curve:
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Summary statistics

• Summary statistics for time-to-event data are typically derived
from the Kaplan-Meier estimates

• For example, in this study we might report estimates of the
probability of remaining GVHD-free at 60 days of 84% in the
MTX+CSP group and 52% in the MTX alone group

• This can be obtained simply by reading the Kaplan-Meier
curve “vertically”

• One can also read the Kaplan-Meier curve “horizontally” to
obtain estimates of quantiles
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Median survival times

• One quantile of particular interest is the median; i.e., the time
at which the survival function drops below 0.5

• In the case where death is the outcome, this is known as the
median survival time and is almost always reported (if it can
be estimated)

• For our GVHD example, the median time to event cannot be
estimated since Ŝ(t) never reaches 0.5; to see what the idea,
though, let’s briefly turn to data from a clinical trial of a
cancer drug called Avastin
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Kaplan-Meier curve: Avastin study
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treatment

 

The median duration of therapy was 27.6 weeks in
the group given IFL plus placebo and 40.4 weeks
in the group given IFL plus bevacizumab. The per-
centage of the planned dose of irinotecan that was
given was similar in the two groups (78 percent in
the group given IFL plus placebo and 73 percent in
the group given IFL plus bevacizumab).

As of April 2003, 33 patients in the group given
IFL plus placebo and 71 in the group given IFL plus
bevacizumab were still taking their assigned initial
therapy. The rates of use of second-line therapies
that may have affected survival, such as oxaliplatin
or metastasectomy, were well balanced between
the two groups. In both groups, approximately 50
percent of patients received some form of second-
line therapy; 25 percent of all patients received ox-
aliplatin, and less than 2 percent of patients under-
went metastasectomy.

 

efficacy

 

The median duration of overall survival, the primary
end point, was significantly longer in the group
given IFL plus bevacizumab than in the group given
IFL plus placebo (20.3 months vs. 15.6 months),
which corresponds to a hazard ratio for death of
0.66 (P<0.001) (Table 3 and Fig. 1), or a reduction
of 34 percent in the risk of death in the bevacizu-
mab group. The one-year survival rate was 74.3 per-
cent in the group given IFL plus bevacizumab and
63.4 percent in the group given IFL plus placebo
(P<0.001). In the subgroup of patients who re-
ceived second-line treatment with oxaliplatin, the
median duration of overall survival was 25.1 months
in the group given IFL plus bevacizumab and 22.2
months in the group given IFL plus placebo.

The addition of bevacizumab to IFL was associ-
ated with increases in the median duration of pro-
gression-free survival (10.6 months vs. 6.2 months;
hazard ratio for progression, 0.54, for the compar-
ison with the group given IFL plus placebo;
P<0.001); response rate (44.8 percent vs. 34.8 per-
cent; P=0.004); and the median duration of re-
sponse (10.4 months vs. 7.1 months; hazard ratio
for progression, 0.62; P=0.001) (Table 3). Figure 2
shows the Kaplan–Meier estimates of progression-
free survival. Treatment effects were consistent
across prespecified subgroups, including those de-
fined according to age, sex, race, ECOG perfor-
mance status, location of the primary tumor, pres-
ence or absence of prior adjuvant therapy, duration

of metastatic disease, number of metastatic sites,
years since the diagnosis of colorectal cancer, pres-
ence or absence of prior radiotherapy, baseline
tumor burden, and serum concentrations of albu-
min, alkaline phosphatase, and lactate dehydroge-
nase (data not shown).

 

Figure 1. Kaplan–Meier Estimates of Survival.

 

The median duration of survival (indicated by the dotted lines) was 20.3 
months in the group given irinotecan, fluorouracil, and leucovorin (IFL) plus 
bevacizumab, as compared with 15.6 months in the group given IFL plus pla-
cebo, corresponding to a hazard ratio for death of 0.66 (P<0.001).
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Figure 2. Kaplan–Meier Estimates of Progression-free Survival.

 

The median duration of progression-free survival (indicated by the dotted 
lines) was 10.6 months in the group given irinotecan, fluorouracil, and leuco-
vorin (IFL) plus bevacizumab, as compared with 6.2 months in the group giv-
en IFL plus placebo, corresponding to a hazard ratio for progression of 0.54 
(P<0.001).
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The survival package

• Finally, let’s discuss the R functions for constructing the
Kaplan-Meier estimate and plotting KM curves

• In this course, we will make extensive use of the survival

package in R

• The package is bundled by default with R, meaning that you
do not have to install it, although you will have to load it with

library(survival)

before you can use it
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Surv objects

The survival package has a construct called a Surv object to
handle survival outcomes, which are one entity but with two
components (ti and di):

> S <- with(Data, Surv(Time, Status))

> class(S)

[1] "Surv"

> head(S)

[1] 3+ 8 10 12+ 16 17

> head(S[,1])

[1] 3 8 10 12 16 17

> head(S[,2])

[1] 0 1 1 0 1 1
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survfit

• The function in survival for constructing Kaplan-Meier
estimates is called survfit:

fit <- survfit(S~Data$Group)

where S is a Surv object

• S does not have to be constructed ahead of time; this also
works (and is probably better coding practice):

fit <- survfit(Surv(Time, Status)~Group, Data)
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Summarizing the survfit object

By printing the object, we get a rough summary of each group,
although the summary revolves around the median, which in our
case cannot be estimated:

> fit

n events median 0.95LCL 0.95UCL

Group=CSP 32 15 NA 35 NA

Group=CSP+MTX 32 5 NA NA NA

Provided they can be estimated, we would see the median survival
time in each group, along with upper and lower 95% confidence
interval bounds (we’ll discuss how those are calculated in the next
lecture)
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Summarizing the survfit object (cont’d)

To find out more about the KM estimates at specific times, we can
use the summary function:

> summary(fit, time=40)

Group=CSP

time n.risk n.event survival std.err 95%LCL 95%UCL

40.000 18.000 13.000 0.587 0.088 0.437 0.788

Group=CSP+MTX

time n.risk n.event survival std.err 95%LCL 95%UCL

40.000 25.000 5.0000 0.8353 0.0674 0.7131 0.9784
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plot.survfit

• Once the Kaplan-Meier curve has been estimated, it can be
plotted in a straightforward manner:

plot(fit)

• Some useful options to be aware of are
◦ mark.time: Marks the times at which observations were

censored (default: TRUE)
◦ xmax: Maximum time at which to plot Ŝ(t)
◦ xscale: Set this to 365.25 to get curves displayed in years

instead of days, and so on
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More attractive-looking plots

• Unfortunately, the default survival plots are not particularly
nice-looking, and don’t provide options for adding the number
at risk

• As an alternative, I’m providing:

Plot(fit)

nrisk(fit)

which I used to make the plot on slide 19; note that you may
need to adjust the margins to avoid the number at risk
conflicting with the legend (there are also various R packages
available)

• Next time, we’ll discuss confidence bands for Kaplan-Meier
curves
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