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Introduction

e lLet T be a nonnegative random variable representing the time
to an event
e The distribution of T can be specified in a variety of ways,
three of which are special to survival analysis in the sense that
they come up often in the field, but are encountered only
rarely outside of it:
o The survival function, S(t)
o The hazard function, A(t)
o The cumulative hazard function, A(t)
e We will begin by discussing the case where T follows a
continuous distribution, and come back to the discrete and
general cases toward the end of lecture
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Contmuous case q 5 .
= Functions of survival time

Survival function

e The survival function of T', denoted S(t), is defined as
St)=P(T >1t)

fort >0

e Note that S(¢) is related to the distribution function F'(¢) and
the density function f(¢) in the following ways:

ft)=-5'(t)

t/fs

e Note that S(¢) uniquely defines a distribution
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Functions of survival time

Hazard function

e The hazard function, \(t), is the instantaneous rate of failure
at time ¢, given that an individual has survived until at least
time ¢:

e |n addition, note that

d
At) = ——1log S(t
(1) =~ log (1)
e Note that hazard functions are nonnegative and, like S(t),
uniquely define a distribution (under the assumption that f(t)
is continuous)
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Functions of survival time

Cumulative hazard function

o Finally, the cumulative hazard function is simply the
accumulated hazard up until time ¢:

e Note that

A(t) = —log S(t)
S(t) = exp{-A(t)}
f(t) = A(t) exp{—A(t)}

and once again, A(t) uniquely defines a distribution

Patrick Breheny University of lowa Survival Data Analysis (BIOS 7210)



Continuous case q 5 .
Functions of survival time

Mean residual life

e |t is worth mentioning that there is an interesting connection
between the mean and the survival function

e Specifically, for any nonnegative continuous variable, the
expected residual life, r(t) = E(T — t|T" > t), is equal to

e |n particular,

E(T) = /0 ~ S(u)du,

which you are asked to show as a homework exercise
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inuous case
Special case: Constant hazard

Constant hazard

o Let's consider the simplest meaningful survival distribution,
that of the constant hazard rate:

AY)
|

t

e Obviously, this is overly simplistic for many situations, but is
still a very convenient special case to work with
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Special case: Constant hazard

Cumulative hazard, survival, and density functions

Patrick Breheny

For the special case of constant hazard, the cumulative hazard
is

A(t) = At
the survival function is therefore
S(t) =e M
and the density function is
f(t) = re™

Thus, by assuming a constant hazard, we arrive at the
exponential distribution
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Continuous cz q 5 q
5 Functions of survival time

Example: Human lifetime hazards

Discrete distributions

e lLet's consider the corresponding quantities and relationships
for the analogous case where 1" has a discrete distribution:
i.e., T'=t; with probability f(t;) for a set of values
th <ty <---

e In principle, survival data should always be continuous
because time is a continuous quantity

e For a variety of reasons, however, the discrete case comes up
often in survival analysis:

o Nonparametric approaches typically condition on the observed
failure times, resulting in discrete distributions

o Data is not always recorded at precise times, but only at the
level of day/month /year
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e The survival function is simply

S(t) =Y f(t;)

ti>t

e Note that some authors define S(t) as P(T" > t), while others
define it as P(T" > t); we will use the latter definition to be
consistent with the book
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Functions of survival time

Hazards in the discrete case

e The hazard function is defined as in the continuous case:
)\j = IP’(T = tj|T > tj)
= f(t;)/5(t;),
where

S(t7) = Jim S(1)

e As in the continuous case, there is a relationship between S
and \:

s = [J1 -}

tj<t
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Functions of survival time
Example: Human lifetime hazards

e On the surface, this relationship seems different than what we
had for the continuous case

e However, consider discretizing a continuous hazard by dividing
its range into intervals of equal length (i.e., failure at time ¢;
refers to failure in the jth interval)

e Homework: Show that, for a distribution with constant
hazard A(t) = A, taking the limit of S(¢) = Htjgt{l — A} as
the length of the intervals goes to zero yields the exponential
distribution survival function

e This can be shown not just for constant hazards but for any
continuous hazard function, although the proof is considerably
longer in the general case
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Functions of survival time

Mass function and hazard in the discrete case

Finally, we have the following relationships between the probability
mass function and hazard in the discrete case:

Ftr) =X [T = M)

j<k
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Continuous case -
o Functions of survival time

Example: Human lifetime hazards

U.S. mortality data

Patrick Breheny

In the previous lecture, we discussed human life expectancy
and the subtle relationship between distributions and hazards

Let’s look at some actual data from the Human Mortality
Database at what the real distribution and hazard functions
look like

The data come from death counts by year for the United
States; it is worth mentioning that | have made no effort to
adjust for the fact that the size of the U.S. population was
not constant over this time, so these results are biased, but
still serve to illustrate the general idea
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Continuous case
Discrete case

General case

Example: Human lifetime hazards

Distribution: Age at death for people who died in 1960
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Continuous case
Discrete case

General case

Example: Human lifetime hazards

Hazard function (based on 1960 deaths)
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Continuous case
Discrete case

General case

Example: Human lifetime hazards

Hazard function (based on 1960 deaths; zoomed)
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General case: Introduction

e Finally, let us consider the general case, without assuming
that T is either continuous or discrete

e For the most part, everything we will do in this class falls into
either the continuous or discrete cases, but seeing the general
results are useful for a few reasons:

o General results can help one to see things from a broader,
more universal perspective

o We need general results to deal with mixed distributions that
have both continuous and discrete components

o It provides a good exposure to some extensions of calculus
that may be new to you
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Differential increments

e Since F and A are not necessarily differentiable, expressions
such as f(t) = £ F(t) are not valid

e Instead, we must work in terms of differential increments:
dF(t) =P{T € [t,t +dt)}
= [;1{t =t;} + f(t)dt,

where f; = P{T = t;} and f(t) is the density of the
continuous component of T’

e Similarly, the differential increment of A(?) is

AA(t) = \1{t = t;} + A(t)dt
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Stieltjes integrals

F and A can then be reconstructed from their differential
increments using an extension of integration called Stieltjes
integration

Stieltjes integrals are written in terms of the differential
increments as:

At) :/OtdA

n—00 4

— tim > {A() — At}

where 0 =ty <t1 <---<t,=t

Obviously, we're glossing over some technical ideas here (does
this limit exist? Does it depend on the partition we choose?,
etc.), but hopefully the basic idea makes sense
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Product integrals

e Finally, we can relate hazard functions and survival functions,
but we need something called a product integral (basically, a
product integral is to products what the integral is to sums):

t

S(t) = T{{1 - dA}

0
= lim_ H{l — [A(tk) — Altk-1)]}
k=1
t
_ exp{_/o )\(u)du} TTa-x

t;<t

o Next week, we'll start talking about inference — how to infer
things about A(t) and S(t) from data — particularly in the
presence of censoring
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