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Introduction

• Today’s topic is the use of stratification in Cox regression

• There are two main purposes of stratification:
◦ It is useful as a diagnostic for checking the proportional

hazards assumption
◦ It offers a way of extending the Cox model to allow for

non-proportionality with respect to some covariates

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 2 / 20



Introduction
Checking the proportional hazards assumption

Fitting stratified Cox models

VA Lung Cancer data

• To illustrate these concepts, we will look at a classic survival
data set, the VA lung cancer data (veteran in the survival

package)

• The data comes from a clinical trial carried out by the
Veterans’ Administration on male veterans with advanced,
inoperable lung cancer

• In the trial, patients were randomized to receive either a
standard chemotherapy or an experimental chemotherapy, and
the primary endpoint was the time until death

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 3 / 20



Introduction
Checking the proportional hazards assumption

Fitting stratified Cox models

Covariates

A number of covariates which potentially affect survival were also
recorded:

• karno: The Karnofsky score, a way of quantifying the
patient’s overall baseline status, with ≥ 70 denoting that the
patient is able to care for themselves, 40− 60 meaning that
the patient requires assistance and regular medical care, and
10− 30 meaning that the patient is hospitalized

• diagtime: Time in months from diagnosis to randomization

• age: Age in years at randomization

• prior: Indicator for whether the patient had received prior
therapy

• celltype: Type of tumor (small cell, large cell, squamous,
adenocarcinoma)
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Kaplan-Meier
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Cox results
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Diagnostics for proportional hazards

• Consider the following as a way to assess the proportional
hazards assumption: rather than including a term in the
model as a covariate, we will estimate separate baseline
hazards Λ̂01, Λ̂02, . . . , for each level of the covariate

• If the baseline hazards appear proportional, then it is
reasonable to model the term in the regular manner
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Diagnostic plot types

• Because proportionality is difficult to assess by visual
inspection, it is common to plot log Λ̂0:

Λi(t) = Λ0(t) exp(ηi)

=⇒ log Λi(t) = log Λ0(t) + ηi

• An alternative, known as the Andersen plot, is to plot Λ̂01

versus Λ̂02; under proportional hazards this should be a
straight line with slope exp(η)
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Treatment (Version 1)
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Treatment (Version 2) (β̂ = 0.29)
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Treatment (Version 3, the Andersen plot)
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Cell type
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Karnofsky
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Remarks

• Treatment appears broadly proportional except for very
short-term survival

• Proportional hazards appears questionable with respect to cell
type

• Karnofsky status also appears non-proportional, with the
variable losing relevance over time (which makes sense)

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 14 / 20



Introduction
Checking the proportional hazards assumption

Fitting stratified Cox models

The stratified Cox model

• What should we do in the presence of variables with
non-proportional effects?

• One remedy is to allow for different baseline hazards for each
level of the variable:

λij(t) = λ0j(t) exp(xT
i β),

where λij(t) is the hazard function for the ith subject, who
belongs to the jth stratum

• The model may seem complex, but is entirely straightforward
in the likelihood framework, as we can simply combine
likelihoods across strata:

L(β) =
∏
j

Lj(β)
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Stratified Cox model: Details

Furthermore,

`(β) =
∑
j

`j(β)

u(β) =
∑
j

uj(β)

I(β) =
∑
j

Ij(β),

so estimation, the Newton-Raphson algorithm, and inference are all
straightforward as well: we simply have to sum the contributions
from each stratum
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R code

• The survival package makes it easy to fit stratified Cox
models through the use of the strata function:

fit <- coxph(S ~ trt + karno + ... + strata(celltype))

• summary(fit) will then provide a summary for all the
parametric terms (trt, karno, . . . ), but not celltype

• survfit(fit) will estimate K different baseline hazard
functions, one for each stratum (here, K = 4)
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Predictions

Standard treatment, wait 12 months, age 40, no prior treatment
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Final remarks

• Stratified Cox models are a useful extension of the standard
Cox models to allow for covariates with non-proportional
hazards

• A minor drawback is that stratifying unnecessarily (i.e., even
though the PH assumption is met) reduces estimation
efficiency, although the loss is typically small

• A larger limitation of stratification is that it becomes messy
with continuous variables and with multiple stratification
variables, as there is no way to impose an additive structure
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Final remarks (cont’d)

• The other primary limitation of stratified models is that there
is no way to carry out inference for the stratification variables

• For example, stratification is commonly used to aggregate
results across multi-center studies, because comparing these
sites is typically not of interest

• Stratification is less useful in dealing with non-proportionality
with respect to treatment – we are definitely interested in
estimating the effect of treatment, and although we can
obtain descriptive measures by estimating baseline coefficients,
confidence intervals and tests are less straightforward

• In such cases, a more satisfying approach is to directly model
the changing effect of the predictor over time, a topic we will
cover in a future lecture
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