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Introduction

• Thus far, we have worked with Cox regression under the
assumption that no ties are present among the failure times,
and thus, that the data can be uniquely sorted with respect to
time

• In many data sets, however, ties are present, usually due to
the fact that failure times are only reported to the nearest day

• Our first topic for today is how to handle tied survival times in
the Cox regression model
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Average partial likelihood

• Perhaps the most natural solution would be to consider all
possible ways of breaking the ties as equally likely

• In this approach, the Cox partial likelihood would be replaced
with the average of the Cox partial likelihoods over all the
orderings in which the ties have been broken

• As a simple example, suppose subjects 2 and 3 fail at a given
time, and that subject 4 is also in the risk set at that time;
the likelihood contribution would be
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Breslow approximation: Idea

• The averaging method is intuitively reasonable, but from a
mathematical and computational standpoint, very messy and
time-consuming to work with

• An approximation that greatly simplifies the resulting
calculations was proposed by Breslow (1974)

• To continue our simple example from the previous slide, the
idea is that∑
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Breslow approximation: Formula

• Letting sj =
∑

i∈Dj
xi denote the sum of the covariates over

the set Dj of subjects who fail at time j and dj denote the
number of subjects who fail at time j, applying the Breslow
approximation yields the likelihood

L(β) =

J∏
j=1

exp(sTj β)

{
∑

k∈Rj
exp(xT

k β)}dj

• The obvious advantage of this approximation is that the
resulting likelihood looks almost exactly like the original Cox
likelihood, and results in very minor modifications to the
score, information, and algorithm that we derived last week
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Efron approximation: Motivation

• An alternative approximation was proposed by Efron (1977)

• Clearly, there is an advantage to common denominators in the
sum on slide 3, as it allows us to combine the sum into a
single term

• It is also clear, however, that the denominator in the Breslow
approximation is always larger than it should be
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Efron formula

• As a compromise between the two, Efron suggested using the
average weight among the failures at time j,
w̄ = d−1j

∑
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• In general, then, the likelihood becomes

L(β) =

J∏
j=1

exp(sTj β)∏dj−1
r=0 {

∑
k∈Rj

exp(xT
k β)− rw̄}
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Remarks

• To summarize:
◦ Average partial likelihood: Best accuracy, hardest to work with
◦ Efron approximation: Good accuracy, moderately easy to work

with
◦ Breslow approximation: Least accurate, very easy to work with

• When the number of ties is small, there is typically little
difference between the approaches

• Many software programs implement the Breslow approach for
its simplicity, but the survival package uses the Efron
approximation
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Discrete Cox model

• However, what if there are a lot of ties?

• In that case, it would make sense to treat the failure
distribution as discrete, and propose a model in terms of the
discrete hazards λij (the hazard for the ith subject at time j)
as opposed to the hazard density λi(t)

• The semiparametric analog to Cox regression in the discrete
case is

λij
1− λij

=
λ0j

1− λ0j
exp(xT

i β)
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Conditional logistic regression

• By conditioning on the number of failures at each time j, one
can construct a likelihood for β that is free of intercept terms,
allowing us to avoid specifying λj0

• This model, which is also widely used in categorical data
analysis, is known as conditional logistic regression, and is also
referred to as the “discrete Cox model” in survival analysis

• This model is available in coxph through the ties=‘exact’

option
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Motivation

• As we have remarked several times, the Cox model is a model
only for the relative risk comparing subjects versus each other
– it makes no predictions as far as absolute risk

• In other words, we can use the Cox model to estimate
coefficients, hazard ratios, etc., but we cannot use it to
estimate the probability, say, that a subject will survive at
least 2 years

• Such quantities are clearly of interest in many applications,
however; is there a way we can go back and estimate a
baseline hazard?
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Basic approach

• It is certainly possible to write down the nonparametric
likelihood under proportional hazards and consider the joint
maximum likelihood estimation of β and the point masses λ0j
at each observed failure time

• More simply, however, we can just fix β at the Cox regression
estimate β̂, then maximize the likelihood with respect to the
λ0j parameters alone

• Typically, there is little difference between the approaches, as
the point masses themselves tend to have little impact on the
relative risks
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Nonparametric likelihood

• In our lecture on the Kaplan-Meier estimate, we showed that
the nonparametric MLE of the survival function S(t) is a
discrete function with point masses at the observed failure
times (and no mass anywhere else)

• Making the appropriate modifications to allow each
observation its own subject-specific hazard, we have:

L(λ) =
∏
j

{ ∏
i∈Dj

λij
∏

i∈Rj−Dj

(1− λij)
}
,

where j indexes failure times, with Dj the set of individuals
dying at time j and Rj is the risk set
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Proportional hazards on the discrete scale

• The proportional hazards assumption implies the following
relationship between subject-specific survival and baseline
survival:

Si(t) = S0(t)
wi ,

where wi = exp(xT
i β)

• Since S(t) =
∏

tj≤t(1− λj) for a discrete survival function,
this means that

λij = 1− (1− λ0j)wi
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Main result

• Letting αj = 1− λ0j , the nonparametric MLE of S0 given β
can be represented with

L(α) =
∏
j

{ ∏
i∈Dj

(1− αwi
j )

∏
i∈Rj−Dj

αwi
j

}
,

• In the case where only one failure occurs at tj , we have

α̂j = (1− πjj)1/wj ;

if more than one failure occurs, there is no closed form
solution and numerical optimization methods must be used to
solve for α̂j
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Survival formulas

Once we have obtained β̂ and α̂, our estimates of the survival
function for a subject with covariate values xi is given by

Ŝi(t) =
∏
tj≤t

α̂
exp(xT

i β̂)
j ,

which, like the Kaplan-Meier estimate, will be a step function with
discontinuous drops at every observed failure time
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survfit.coxph

• The survfit function from the survival package can be
applied to the output of a Cox regression model in order to
carry out estimation of the baseline hazard as described on
the previous slides:

fit <- coxph(S ~ trt + stage + hepato + bili, pbc)

sfit <- survfit(fit)

• The methods we described previously, such as summary(sfit)
and plot(sfit), work exactly as they did before

• The survival package also calculates a confidence interval
for Ŝi(t), although in the interest of time, we won’t go into
the details
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Other estimators

• Several methods for estimating the baseline hazards exist, and
differ mainly in how they handle ties; the one we derived in
class is usually referred to as the Kalbfleish-Prentice estimator

• Others include the Nelson-Aalen-Breslow and Efron
estimators; these are also available as options in the
survival package

• Actually, the default in the survival package is the
Nelson-Aalen-Breslow estimator; to obtain the estimator we
derived in class, we would need to specify

sfit <- survfit(fit, type="kalbfleisch-prentice")

although again, unless there are a lot of ties, the methods are
all pretty similar
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PBC example (baseline)
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By default, the curve is drawn at x = 0 for the centered model;
i.e., at the mean of each covariate

Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 19 / 23



Tied survival times
Estimating survival probabilities

Derivation
Examples

Subject specific curves

• Like predict, survfit.coxph accepts a newdata argument,
allowing the calculation of subject-specific survival curves

ndat <- data.frame(trt=0, stage=1:4, hepato=0, bili=1)

sfit <- survfit(fit, newdata=ndat)

• One can then submit plot(sfit) to plot the curves or print
sfit, which will provide estimates and confidence intervals for
the median survival time
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PBC example: Survival by stage
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GVHD example: Cox versus Kaplan-Meier
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Remarks

• Although the approaches are similar, it is important to keep in
mind that survival function estimation in the Cox model is
restricted to obey the proportional hazards assumption, and
therefore cannot capture non-proportional aspects of the data

• For example, in the GVHD data, there appears to be little
difference between the treatment groups at early times and a
more substantial difference at later times; by construction, the
Cox estimates show a constant benefit over time

• In later lectures, we will discuss diagnostics and potential
remedies for non-proportional hazards
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