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Introduction

In previous lectures, we constructed and plotted likelihoods
and used them informally to comment on likely values of
parameters

Our goal for today is to make this more rigorous, in terms of
quantifying coverage and type I error rates for various
likelihood-based approaches to inference

With the exception of extremely simple cases such as the
two-sample exponential model, exact derivation of these
quantities is typically unattainable for survival models, and we
must rely on asymptotic likelihood arguments
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The score statistic

Likelihoods are typically easier to work with on the log scale
(where products become sums); furthermore, since it is only
relative comparisons that matter with likelihoods, it is more
meaningful to work with derivatives than the likelihood itself
Thus, we often work with the derivative of the log-likelihood,
which is known as the score, and often denoted U :

UX(θ) =
d

dθ
`(θ|X)

Note that
U is a random variable, as it depends on X
U is a function of θ
For independent observations, the score of the entire sample is
the sum of the scores for the individual observations:

U =
∑
i

Ui
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Mean

We now consider some theoretical properties of the score

It is worth noting that there are some regularity conditions
that f(x|θ) must meet in order for these theorems to work;
we’ll discuss these in greater detail a little later

Theorem: E(U) = 0

Note that maximum likelihood can therefore be viewed as a
method of moments estimator with respect to the score
statistic
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Variance

Theorem:

VU = −E{U ′}

The variance of U is given a special name in statistics: it is
called the Fisher information, the expected information, or
simply the information

For notation, I will use I to represent the Fisher information,
and Ii to represent the contribution to the Fisher information
coming from the ith subject; note that under independence,
I =

∑
i Ii

Like the score, the Fisher information is a function of θ,
although unlike the score, it is not random, as the random
variable X has been integrated out
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Some examples

Example #1: For the normal mean model,

Ii =
1

σ2
;

this makes sense: as the data becomes noisier, less
information is contained in each observation

In the above example, the information is free of both X and µ
(the parameter of interest); in general both can appear in the
information, which gives rise to a few different ways of
working with the information in practice

Example #2: For the Poisson distribution,

U ′i = −Xiλ
−2
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Observed information

The Fisher information is therefore

Ii(λ) = λ−1

Here, taking the expectation was straightforward; in general,
it can be complicated, and for survival data analysis in
particular, typically involves the censoring mechanism

A simpler alternative is to use the observed values of {Xi}
rather than their expectation; this is known as the observed
information and will be denoted I

In the Poisson example,

I(λ) = λ−2
∑
i

xi
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Asymptotic distribution

We have a sum of independent terms for which we know the mean
and variance; we can therefore apply the central limit theorem:

√
n{Ū − E(U)} d−→ N(0, Ii),

or equivalently,

1√
n
U

d−→ N(0, Ii),
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Consistency and information

Proposition: Any consistent estimator of the information can
be used in place of Ii from the previous slide, and the result
still holds

Thus, all of the following results hold:

I(θ0)
−1/2U

d−→ N(0, 1)

I(θ̂)−1/2U
d−→ N(0, 1)

I(θ0)
−1/2U

d−→ N(0, 1)

I(θ̂)−1/2U
d−→ N(0, 1)

provided that θ̂ is a consistent estimator of the true value θ0
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Multiple parameters

All of these results can be extended to the case where
multiple parameters are involved; this will be essential for
studying any sort of regression model

The score is now defined as

U(θ) = ∇`(θ|x),

where ∇`(θ|x) is the gradient of the log-likelihood, and has
elements ∂

∂θ1
`(θ|x), ∂

∂θ2
`(θ|x), . . .

Note that

The score is now a p× 1 vector; to denote this I will often
write the score vector as u
Finding the MLE now involves solving the system of equations
u(θ) = 0
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Multivariate extensions

The score still has mean zero: E(u) = 0

The variance of the score is still the information, V(u) = I,
although the information I is now a p× p covariance matrix

It is still true that under independence u =
∑

i ui and
I =

∑
i I i

We again have that I = −E(∇u), where ∇u is a p× p
matrix of second derivatives with i, jth element ∂

∂θi
∂
∂θj
`(θ|x);

this matrix is referred to as the Hessian matrix
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Multivariate CLT results

Finally, it is still true that

I−1/2u d−→ N(0,1),

where 1 denotes the p× p identity matrix

As before, any of I(θ0), I(θ̂), I(θ0), or I(θ̂) can be used as
the information and the result still holds

From the above, we also have

uTI−1u d−→ χ2
p
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Remarks on the non-IID case

In general, all of these extensions are straightforward to show;
however, it is worth noting that applying the central limit is
somewhat more complex in the non-IID case

In particular, it is not enough that the score have finite mean
and variance in order to apply the CLT; we must also have
I/n→ Ī 6= 0p×p and

I iI−1 → 0p×p

for all i

Essentially, this means that, since each observation no longer
contributes the same information, we have an added
requirement that no single observation can dominate the
information
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Inference: Introduction

How can we use these results to carry out likelihood-based
inference?

It turns out that there are three widely used techniques for
doing so: the score, Wald, and likelihood ratio methods

For the remainder of this lecture, we will motivate these three
approaches and then apply them to exponentially distributed
survival data as an illustration of how they work
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Score test

The score test follows most directly from our earlier
derivations

Here, to test H0 : θ = θ0, we simply calculate

U(θ0)√
I(θ0)

and then compare it to a standard normal distribution

As always, by inverting this test at α = 0.05, we can obtain
95% confidence intervals for θ

Note that the score test, unlike the next two approaches we
will consider, does not even require estimating θ
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Wald approximation

The score test was first proposed by C. R. Rao; an alternative
approach, first proposed by Abraham Wald, relies on a Taylor
series approximation to the score function about the MLE

Proposition:

u(θ) ≈ H(θ̂)(θ − θ̂),

where H is the Hessian matrix
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Wald result

Thus,

I1/2(θ̂ − θ0)
.∼ N(0,1), or

θ̂
.∼ N(θ0,I−1)

The MLE is therefore

Approximately normal. . .
. . . with mean equal to the true value of the parameter. . .
. . . and variance equal to the inverse of the information

Based on this result, we can easily construct tests and
confidence intervals for θ

For simplicity, the above result is stated in terms of I; in
practice it is typical to use I(θ̂) in the Wald approach
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LRT approximation

Finally, we could also consider the asymptotic distribution of
the likelihood ratio, originally derived by Samuel Wilks

This approach also involves a Taylor series expansion, but here
we approximate the log-likelihood itself about the MLE, as
opposed to the score

Proposition:

`(θ) ≈ `(θ̂) +
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)
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LRT result

Thus,

2{`(θ̂)− `(θ0)}
.∼ χ2

p

Note that

exp{−χ2
1,(1−α)/2} = 0.15;

this was the basis for choosing 15% as a cutoff for L(θ)/L(θ̂)
in our likelihood intervals

It is worth pointing out, however, that a 15% cutoff for
L(θ)/L(θ̂) is only appropriate for the single parameter case; in
general, the cutoff would need to change in order to account
for the additional degrees of freedom in the problem
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Regularity conditions

The score, Wald, and LRT approaches derived here are all
asymptotically equivalent to each other, and all hold provided that
certain regularity conditions are met:

θ is not a boundary parameter (otherwise we can’t take an
approximation about it)

The information matrix I i(θ0) is finite and positive definite

We can take up to third derivatives of
∫
f(x|θ) inside the

integral, at least in the neighborhood of θ0

The distributions {f(x|θ)} have common support and are
identifiable
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Reparameterization

It is worth noting that the score and Wald approaches will be
affected by reparameterization

For example, if we decide to carry out inference for the
log-hazard γ = log(λ) of an exponentially distributed
time-to-event, we will obtain different score and Wald
confidence intervals than if we constructed intervals for λ and
then transformed them

The likelihood ratio approach, however, since it doesn’t involve
any derivatives, will be unaffected by such transformations
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Pike rat example

To illustrate these approaches and the geometry behind them,
we’ll apply them to the Pike rat data

For the purposes of this illustration, we’ll assume the data
follow an exponential distribution (which is not actually a very
good assumption here) under independent censoring

Also, we’ll just look at overall survival without respect to
pretreatment regimen
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Score approach: H0 : λ = 1
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Score approach: H0 : λ = 1 (cont’d)

So, we observe a score of d− v = 11

We would expect the score to be zero (i.e, if λ = 1, we’d
expect to be near the top of the curve, where it’s flat)

Still, the standard error of the slope is
√
d = 6, so our

observed score is only

Z = 11/6 = 1.84

standard deviations away from the mean, implying that we
have insufficient evidence to rule out λ = 1 (p = 0.07)
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Wald approach: H0 : λ = 1
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Wald approach: H0 : λ = 1 (cont’d)

So, we observe a difference of λ̂− λ0 = d/v − 1 = 0.44

We would expect this difference to be near zero if λ was truly
equal to 1

However, the standard error θ̂ is
√
d/v = 0.24, so our

observed difference is only

Z = 0.44/0.24 = 1.84;

in this particular case, the score and Wald approaches
coincide, but this is not true in general

Patrick Breheny Survival Data Analysis (BIOS 7210) 26/32



The score statistic
Inference

Exponential distribution example

Likelihood ratio approach: H0 : λ = 1
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Likelihood ratio approach: H0 : λ = 1 (cont’d)

So, we observe a difference of `(λ̂)− `(λ0) = 2.14

Our p-value is therefore the area to the right of
2(2.14) = 4.29 for a χ2

1 distribution

This turns out to be p = 0.04; thus, λ = 1 would be excluded
from our likelihood ratio confidence interval despite being
included in both the score and Wald intervals
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“Exact” result

For the exponential distribution, we could carry out something
of an “exact” test based on the gamma distribution

Here, our (one-sided) p-value would be the area to the left of
V for a gamma distribution with shape parameter d and rate
parameter λ0, although it would only be exact in the case of
type II censoring

Nevertheless, the resulting one-sided p-value is 0.02; this is in
good agreement with the two-sided p-value of 0.04 we got
from the likelihood ratio test
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Accuracy

This small anecdote doesn’t necessarily prove anything;
nevertheless, it is the case the the likelihood ratio approach is
typically the most accurate of the three

To see why, consider analyzing a transformation, g(θ)

Some transformations will make the normal approximations
for the score and Wald approaches more accurate (and some
will make them less accurate)

Suppose there exists a “best” transformation g∗; you could
improve your score/Wald accuracy by finding and then
applying g∗, but with the likelihood ratio test, you’ve already
achieved that accuracy without even finding g∗
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Bayesian approach: Uniform prior

We might also compare these results to the Bayesian approach,
which doesn’t require asymptotic approximations but does require
the specification of a prior:
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P(λ < 1|d, v) = 0.014
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Bayesian approach: Gamma(2,2) prior
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