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The purpose of this document is provide an introduction (or refresher) to the kinds of
proofs that one sees in a course on real analysis, as these sorts of proofs come up a lot
in theoretical statistics. If you’ve never had a course in real analysis, or it’s been a while
and you’ve forgotten, I think this document will be useful if you’re thinking about taking
Likelihood Theory.

First, a note on style. Most textbooks and papers provide proofs in an unstructured
paragraph style. For the purposes of learning how to prove things, however, I recommend
a more structured approach based on making consecutive explicit statements with explicit
justifications. There are several reasons for this:

1. When you finish a structured proof, it is very clear exactly which conditions were
required, why they were required, and what supporting theorems or results were used.
When you’re learning in a course, this is extremely valuable as it will be more clear to
you how everything is connected.

2. The other major reason is that it’s much harder to make a mistake in a structured
proof. This doesn’t make the proof easier, it just means that in an unstructured proof,
one can easily skip steps without realizing it. We’ll see some examples of this later.

3. It’s also very beneficial from a grading and feedback perspective, as it makes it much
clearer to the person grading the proof whether you understand all the pieces or not.

Definitions, “there exists”, and “for all”

Many proofs in theoretical statistics involve convergence; loosely speaking, as we collect
more and more data, we can be increasingly sure that certain things will happen. We’ll
discuss probabilistic convergence in the course, but before that, it will help to be familiar
with ordinary, deterministic convergence.

Definition. A sequence x1, x2, . . . of real numbers is said to converge if there exists a real
number x such that for all ε > 0, there is an integer N such that |xn − x| < ε for all n > N .
In this case, we say that xn converges to x, or that x is the limit of xn, and write xn → x
or limxn = x (these mean the same thing). If no such number exists, the sequence is said
to diverge.
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To make this definition concrete, let’s consider a specific sequence: e−1, e−2, . . .. In-
tuitively, these numbers are getting closer to zero, so it seems right to say the sequence
converges to zero. But does it satisfy the definition? Notice that there are two specific
clauses that come up in the above definition, and they occur constantly in mathematical
proofs and theorems:

• “there exists”: There is at least one number satisfying this condition. Denoted ∃.
• “for all”: This has to be true in every possible case, no exceptions. Denoted ∀.

So, when we say that “there exists a real number x”, we’re only requiring these conditions
to be satisfied for the limit point; in the case of our example xn = e−n, we only need to show
that it happens at x = 0. Maybe this condition is met at other points, maybe it isn’t.

On the other hand, when we say “for all ε > 0”, the rest of the condition has to true for
every single positive real number. Maybe we can find ε values for which the condition is met,
but it if doesn’t hold for all of them, not good enough.

For example, suppose we consider the point x = 0.001: does xn converge to 0.001? Well,
if ε = 0.002, then yes, we can find a number N such that |xn − x| < ε for all n > N . For
example, N = 6 works: ∣∣e−6 − 0.001

∣∣ = 0.0015 < 0.002∣∣e−7 − 0.001
∣∣ = 0.000088 < 0.002

. . .

However, this isn’t enough – we need to be able to find a suitable N for all positive ε. If
ε = 0.0005, for example, we can never find an N that will work.

One final important point to note here is that the order of these clauses matters. For
every ε, there exists a suitable N . We choose ε first, and can then find an N that works for
that ε – we don’t need to find an N that works for all ε (and in fact, there typically isn’t
such a N). If ε = 0.001, then N = 7 works. If ε = 0.00000000000000000000000001, we are
going to have to choose a much larger N (but we can always find such an N).

Finding N is fairly simple in this case; we can simply take the log of both sides:

e−n < ε

−n < log ε

n > − log ε.

So, N = d− log εe, where d·e denotes the ceiling function (i.e., round up the number inside to
the next integer). To make things even more concrete, one could think of N(ε) as a function:

n <- function(eps) {ceiling(-log(eps))}

n(0.001)

## 7

n(0.0000001)

## 17

n(0.00000000000000001)

## 40
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Structured proofs

That was a lot of preliminary stuff, but it’s very important to understand definitions before
you move on to proofs. Now, let’s prove that e−n → 0. What, specifically, do we need to
prove? That for all ε > 0, there is an integer N such that |e−n| < ε for all n > N . So, we
need to start with “Let ε > 0” (this is how a lot of proofs start):

Proof. Let ε > 0, and let N = d− log εe. Then for all n > N ,∣∣e−n∣∣ = e−n e−n is always positive

< e−N e−n is strictly decreasing

= exp{−d− log εe} Definition of N

≤ elog ε e−n decreasing

= ε

The left column is a series of statements or claims; this is the main logic of what’s
happening in the proof. Chaining all the lines together, we have |e−n| < ε. Thus, we’ve
done what we needed to do: given any positive ε, I can find always find an N that meets
the requirement. Thus, e−n → 0 by the definition of convergence.

The right column provides the justification for each step. For example, in the fourth
line we claimed that exp{−d− log εe} ≤ elog ε. How do we know that this is true? Well,
dxe ≥ x since the operation involves rounding up, and e−x is a decreasing function of x.
So by replacing the argument to e−x with something smaller, the result must be larger (or
equal, since − log ε could be an integer already).

How far to go with these justification depends on what the reader of the proof would
likely consider obvious, and is therefore a judgment call. For example, we could include a
proof of the fact that e−x is a decreasing function of x, but in my judgment this is going off
on a bit of a tangent that distracts from the main point of the proof. In a similar fashion, I
didn’t even provide a justification for the final step, but to be really thorough, I could have
added that exp() and log() are inverse functions. In general, for the purposes of a course,
you should err on the side of being very thorough and justifying every step. In a paper or
thesis, however, going into this level of detail for every proof is probably unnecessary as the
audience (other people with PhDs in statistics or biostatistics) will probably find many of
the steps obvious and not requiring justification.

One final comment: as the above proof should hopefully make clear, a final proof does
not describe one’s thought process in terms of how you arrived at the result. Clearly I didn’t
know what I should set N equal to until I’d worked through the math to solve for n in the
previous section. If you’re reading the proof for the first time, the line “let N = d− log εe”
is going to seem mysterious; where did that come from? Keep in mind that we’re writing a
proof, not a novel of self-discovery. The point is to construct an iron-clad, rigorous argument,
not to communicate our thoughts and feelings and realizations. It might not be immediately
obvious why I am letting N = d− log εe“, but it should be completely obvious that I can set
N = d− log εe”. One can certainly write about the thought process and intuition behind the
proof, but this should be done outside the formal proof – we don’t want to mix formal logic
with informal intuition.
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Convergence

Let’s go through a few more proofs. For example, you might find the “there exists a real
number x” clause in the definition of convergence unsatisfying, as it leaves open the possibility
that a many such numbers exist and a sequence might converge to lots of different things.
However, this is in fact not possible.

Theorem. If xn → a and xn → b, then a=b.

Proof. Let ε > 0.

∃Na : n > Na =⇒ |xn − a| < ε
2

xn → a1○
∃Nb : n > Nb =⇒ |xn − b| < ε

2
xn → b2○

Thus, for all n > N = max(Na, Nb), we have

|a− b| = |a− xn + xn − b|
≤ |xn − a|+ |xn − b| Triangle inequality

< ε

∴ a = b

In the above proof, the symbol =⇒ means “implies” and the symbol ∴ means “therefore”
(writing out the words is fine too, I’m just introducing the symbols because I occasionally
use them in class). This proof introduces a standard technique that comes up often: since
xn → a, I can get xn as close to a as I want. I could find an n such that |xn − a| < ε, but
why stop there? I can keep going and get |xn − a| < ε/2, which ends up making the rest
of the proof more clear. I could keep going even further and get |xn − a| < ε/1000000 if I
wanted, but this isn’t necessary for what I’m trying to show.

Summarizing the above proof, if xn → a and xn → b, then for any positive number ε, it
must be the case that |a− b| < ε. In other words, they have to be equal (a− b = 0). Here,
the triangle inequality states that

|x+ y| ≤ |x|+ |y| .

Applied to line three, this gives

|a− xn + xn − b| ≤ |a− xn|+ |xn − b|
|a− b| < ε

2
+ ε

2
.

Hopefully the logic here is clear and all the steps of the proof make sense (if not, feel free
to come by my office). You may very well be thinking “I understand the proof, but I could
never come up with that!” This is normal; don’t worry about it. Any technique that you’ve
never seen before is going to seem incredible and clever, but the more exposure to proofs
you have, the more you will recognize all of the above steps as fairly standard and you will
definitely be able to recognize when you need them in the future.

Theorem. If xn → x, then the sequence xn is bounded.
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Proof.

∃N : n > N =⇒ |xn − x| < 1 xn → x

∃r = max{1, |x1 − x| , . . . , |xN − x|} Maximum of finite set exists

∴ {xn}∞n=1 is bounded r + 1 + |x|

This is a fairly simple proof, but it illustrates a few important points. First, the choice
of “1” in the first line is completely arbitrary; I could have chosen any number. Second, and
more importantly, the heart of this proof is the second line, where we establish that there
is a number r that bounds |xn − x| and therefore also bounds xn. However, it is important
to recognize that this is a claim (of existence), and it requires a justification. It is very easy
in an unstructured proof to just say “let r by the maximum of {1, |x1 − x| , . . . , |xN − x|}”.
But how do you know that this maximum exists? If the set were infinite, we wouldn’t know
this. For example, we saw earlier that e−n → 0, so by our proof, e−1, e−2, . . . is bounded.
However, consider the set {. . . , e−(−2), e−(−1), e−0, e−1, e−2, . . .}. This sequence converges as
n → ∞, but because there is an infinite collection of numbers leading up to xN , our proof
above doesn’t work – we don’t know that this set has a maximum (and indeed, it doesn’t
have a maximum, and the set isn’t bounded).

This is a common way in which it is easy to skip steps in an unstructured proof. Of course,
one could still write “Let r = max{1, |x1 − x| , . . . , |xN − x|}” in a structured proof, but it
would be immediately clear that the right hand column is empty and that this statement
has not been justified. Now, sometimes it’s fine to say “let” without a justification: writing
“Let ε > 0” and justifying it with “positive numbers exist” is pedantic. One could argue
that letting N = d− log εe should be justified in the sense that this only exists if ε > 0 (which
it is), and furthermore we should be more careful in the definition: N = max{1, d− log εe}
is more technically sound (if ε is very large, N could be negative according to our original
definition). It never hurts to think about these things, but at the same time, it’s something
of a judgment call and I felt that going into these justifications was a distraction from the
main idea. On the other hand, the “maximum of a finite set” justification is quite important
because it’s really the main idea of the proof.

Now would be a good time to try proving things on your own. Here are three theorems
to start with (solutions will be provided).

Theorem. Suppose xn → x and yn → y. Then xn + yn → x+ y.

Theorem. Suppose xn → x and yn → y. Then xnyn → xy.

Theorem. Suppose xn → x, with xn 6= 0 for all n and x 6= 0. Then 1/xn → 1/x.

For the third theorem, is xn 6= 0 actually required? If we know that x 6= 0, can we still
have xn = 0?

Continuity

Another major concept in analysis is that of continuity. Suppose we have a function f and
a convergent sequence xn → x. Do we know that as f(xn)→ f(x)? The answer is that no,
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this doesn’t always happen. Only some functions have this property, and those functions are
said to be “continuous”. Below is the formal definition.

Definition. A function f is said to be continuous at the point x0 if for every ε > 0, there
exists δ > 0 such that |f(x)− f(x0)| < ε for all x : |x− x0| < δ. If f is continuous at every
point in its domain, then the entire function f is said to be continuous.

This is similar to the concept of convergent sequences, except now instead of a countable
sequence of points x1, x2, . . ., we are concerned with all the points in the “neighborhood”
{x : |x− x0| < δ}; that is, the points near x0. Many of the techniques that we encountered
earlier with convergence are very similar to the techniques one uses with continuity. These
techniques are often referred to as “delta-epsilon” techniques. For example, the techniques
used in the following proof should look fairly familiar by now.

Theorem. Suppose xn → x0 and f is continuous at x0. Then f(xn)→ f(x0).

Proof. Let ε > 0.

∃δ : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε f continuous at x0

∃N : n > N =⇒ |xn − x0| < δ xn → x0

∴ n > N =⇒ |f(xn)− f(x0)| < ε

One important thing to note here is that the order of these steps is important. Students
often switch the order of the first two lines in this proof, but this makes no sense. The claim
“∃N : n > N =⇒ |xn − x0| < δ” is meaningless if δ hasn’t been defined yet. This isn’t just
semantics: if you were trying to determine how large n had to be in order to ensure that
f(xn) is within a certain tolerance of f(x0), you couldn’t start by finding N . Without using
continuity first, you’d have no idea how close xn must be to x0 in order to ensure that f(xn)
is within ε of f(x0).

It is worth noting that we can actually make the above theorem into an “if and only if”
statement, and thus, an equivalent definition of continuity, but we would have to add the
condition that f(xn)→ f(x) for all sequences xn → x. For example, a function could satisfy
f(xn)→ f(x0) for increasing sequences xn ↗ x0 but not for decreasing sequences xn ↘ x0;
such functions are not continuous at x0.

Here are some additional proof exercises related to continuity for you to practice with.
Note that the sum and product proofs are very similar to the corresponding proofs for
sequences; however, they are still useful exercises if you’ve never done delta-epsilon proofs
before.

Theorem. Let the functions f and g be continuous at x0. Then h = f + g is continuous at
x0.

Theorem. Let the functions f and g be continuous at x0. Then h = f · g is continuous at
x0.

Theorem. Let the function f be continuous at x0 and the function g be continuous at f(x0).
Then h(x) = g(f(x)) is continuous at x0.

Exercise: Write an R function n(eps) that returns the smallest N for which n > N =⇒
|f(xn)− f(x0)| < ε for xn = 21/n and f(x) = ex.
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