L1-L2 norm inequality
Home
Theorem
: For all
x
∈
R
d
,
‖
x
‖
2
≤
‖
x
‖
1
≤
d
‖
x
‖
2
Proof
:
i)
‖
x
‖
2
2
=
∑
i
x
i
2
≤
∑
i
|
x
i
|
∑
i
|
x
i
|
∑
i
|
x
i
|
∑
i
|
x
i
|
=
∑
i
x
i
2
+
∑
i
≠
j
|
x
i
|
|
x
j
|
=
‖
x
‖
1
‖
x
‖
1
⟹
‖
x
‖
2
≤
‖
x
‖
1
⋅
is monotone
ii)
‖
x
‖
1
=
a
⊤
b
Let
a
i
=
1
,
b
i
=
|
x
i
|
≤
‖
a
‖
2
‖
b
‖
2
Cauchy-Schwarz
=
d
‖
x
‖
2