Theorem: Let \(f(\x) = \norm{\x}\), where \(\norm{\cdot}\) is any norm. Then \(f(\x)\) is continuous.

Proof: Let \(\eps >0\) and \(\p\) denote any point. Suppose \(\x\) satisfies \(\norm{\x-\p} < \eps\). \(\begin{alignat*}{2} \tag*{$\tcirc{1}$} \norm{\x} &\leq \norm{\x-\p} + \norm{\p} &\hspace{4em}& \href{norm.html}{\text{Triangle inequality}} \\ \tag*{$\tcirc{2}$} \norm{\p} &\leq \norm{\p-\x} + \norm{\x} &\hspace{4em}& \href{norm.html}{\text{Triangle inequality}} \\ \norm{\x} - \norm{\p} &< \eps && \tcirc{1} \\ \norm{\p} - \norm{\x} &< \eps && \tcirc{2}; \href{norm.html}{\text{Homogeneity}} \end{alignat*}\) I.e., there exists \(\delta\) (in this case, \(\delta = \eps\)) such that \(\norm{\x-\p} < \delta \implies \abs{f(\x)-f(\p)} < \eps\).