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Triangular arrays

Introduction

e Last time, we proved the central limit theorem for the iid case

e Obviously, this is very useful, but at the same time, has clear
limitations — the majority of practical applications of
statistics involve modeling the relationship between some
outcome Y and a collection of potential predictors {Xj}?zl

e Those predictors are not the same for each observation;
hence, Y is not iid and the ordinary CLT does not apply

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny



Triangular arrays

Introduction (cont’d)

e Nevertheless, we'd certainly hope it to be the case that
\/H(B — B) converges to a normal distribution even if the
errors are not normally distributed

e Does it? If so, under what circumstances?

e Before getting to this question, let’s first introduce the
concept of a “triangular array” of variables
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Triangular arrays

Triangular array

e A triangular array of random variables is of the form

X1
Xo1 Xoo
X311 X3 X33

*

where the random variables in each row (i) are independent of
each other, (ii) have zero mean and (iii) have finite variance.
e The requirement that the variables have zero mean is only for
convenience; we can always construct zero-mean variables by
considering X,,; = Y — pni
e |'ve stated the definition here in terms of scalar variables, but
the entries in this triangle can also be random vectors x,;
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Triangular arrays

Triangular array (cont'd)

e We are going to be concerned with Z,, = > | X,,;, the
row-wise sum of the array
e Since the elements of each row are independent, we have

n n
2 2
so=VZy=Y VXpi=)> o}
i=1 i=1
or, if the elements in the array are random vectors,

V,=Vz, =) Vxp =) By
=1

i=1
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Triangular arrays

Non-IID laws of large numbers

e Before moving on to central limit theorems, it's worth
mentioning how the law of large numbers extends to the
non-iid case

e Theorem (Law of Large Numbers, non-11D): Suppose
X1,X2, ... are independent random variables with
%ZZ- p; — p and %ZVXi is bounded. Then x — .

® Note that if there is a uniform bound on the individual
variances, meaning that (Vx;);r < M for all i, j, k, then
%Zin is bounded as well
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Univariate version

Lindeberg-Feller CLT -
Multivariate version

Lindeberg condition

e There are a few different ways of extending the central limit
theorem to non-iid random variables; the most general of
these is the Lindeberg-Feller theorem

e This version of the CLT involves a new condition known as
the Lindeberg condition: for every € > 0,

1 n
—22 1(| Xnil > esn)}t — 0
Sn
asn — 0o
e We'll discuss the multivariate version of this condition a bit
later

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny



Univariate version
Multivariate version

Lindeberg-Feller CLT

Example

e The Lindeberg condition is a bit abstract at first, so let's see
how it works, starting with the simplest case: iid random
variables

e Theorem: Suppose X1, Xo, ... are iid with mean zero and
finite variance. Then the Lindeberg condition is satisfied.

e There are three key steps in this proof:

o Replacing the infinite sum with a single quantity o< ET,,

o T, 250 (which happens if s, — 00)

o ET,, — 0 by the Dominated Convergence Theorem (requires
finite variance)
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Univariate version

Lindeberg-Feller CLT Mult

Non-iid case

e The last two steps work out essentially the same way in
non-iid settings

e The first step, however, requires some resourcefulness

o Typically, the proof proceeds along the lines of bounding the
elements of the sum by their “worst-case scenario”; this
eliminates the sum, but requires a condition requiring that the
worst-case scenario can't be too extreme

o We'll see a specific example of this later as it pertains to
regression
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Univariate version

Lindeberg-Feller CLT - >
Multivariate version

Lindeberg's theorem

e We are now ready to present the Lindeberg-Feller theorem,
although we won't be proving it in this course

e Theorem (Lindeberg): Suppose {X,,;} is a triangular array
with Z, = 3", X,,; and s2 = VZ,,. If the Lindeberg
condition holds: for every € > 0,

1 n
2 E 1(| Xni| > €sn)} — 0,
n _

=

then Z,, /sy, N N(0,1).
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Univariate version

Lindeberg-Feller CLT
Multivariate

Lindeberg's theorem, alternate statement

e The preceding theorem is expressed in terms of sums; it is
often more natural to think about Lindeberg’'s theorem in
terms of means

¢ Theorem (Lindeberg) Suppose {Xni} is a triangular array
such that Iy = = Z Xni, 82 = %2?21 VX,;, and
52— 8240 If the Lmdeberg condition holds: for every
e >0,

—ZE{ 1(| Xpi| > ey/n)} — 0,

then /nZ, — N(0, s2).
o Note: we've added an assumption that s2 — s2, but made the
Lindeberg condition easier to handle (s, no longer appears)
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Univariate versi

Lindeberg-Feller CLT -
Multivar

Feller's Theorem

e The preceding theorem(s) show that the Lindeberg condition
is sufficient for asymptotic normality
e Feller showed that it was also a necessary condition, if we
introduce another requirement:
2
O' .

n
b =10

as n — 00; i.e., no one term dominates the sum

e Theorem (Feller): Suppose {X,;} is a triangular array with
Zn =S Xy and 2 = VZ,. If Z,,/sp — N(0,1) and
max; 02;/s2 — 0, then the Lindeberg condition holds.
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Univariate version
Multivariate version

Lindeberg-Feller CLT

Lindeberg-Feller theorem

e Putting these two theorems together, the Lindeberg-Feller
Central Limit Theorem says that if no one term dominates the
variance, then we have asymptotic normality if and only if the
Lindeberg condition holds

e The forward (Lindeberg) part of the theorem is the most
important part in practice, as our goal is typically to prove
asymptotic normality

e However, it is worth noting that the Lindeberg condition is the
minimal condition that must be met to ensure this

e For example, there is another CLT for non-iid variables called
the Lyapunov CLT, which requires a “Lyapunov condition”;
not surprisingly, this implies the Lindeberg condition, as it is a
stronger condition than necessary for asymptotic normality
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Univariate version

ittt (el CEllr Multivariate version

Multivariate CLT

e Now let's look at the multivariate form of the Lindeberg-Feller
CLT, which I'll give in the “mean” form

e Theorem (Lindeberg-Feller CLT): Suppose {x,;} is a
triangular array of d x 1 random vectors such that
Zp = %Z?:l Xni and V,, = % » 1 Vx,; — V, where V is
positive definite. If for every € > 0,

1 n
- > E{lxnilP1(lIxnill = ev/n)} =0,
i=1

then \/nz, — N(0, V).
e Or equivalently, \/ﬁVﬁl/an 4, N(0,I)
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Univariate version

ittt (el CEllr Multivariate version

Multivariate Feller condition

e Similar to the univariate case, the Lindeberg condition is both
necessary and sufficient if we add the condition that no one
term dominates the variance

e In the multivariate setting, this means that

VXZ'

— 0gxd
n

for all 7; the division here is element-wise
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Regression

CLT for linear regression

e OK, now let's take what we've learned and put it into
practice, answering our question from the beginning of lecture:
do we have a central limit theorem for linear regression?

e Theorem: Suppose y = X3* + w, where w; g (0,02).
Suppose %XTX — 3, where X is positive definite, and let x;
denote the d x 1 vector of covariates for subject i (taken to
be fixed, not random). If ||x;|| is uniformly bounded, then

L(XTX)2(B - B*) - N(0, T).

o In other words, B ~ N(8*,02(XTX)™ 1)
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Regression

RENMES

e Note that in proving this result, we needed two key conditions
° %XTX converging to a p.d. matrix; this seems obvious since if

XTX was not invertible, E isn't even well-defined
o ||x;|| bounded; this is less obvious, but is connected to the idea
of influence in regression

e In iid data, all observations essentially carry the same weight
for the purposes of estimation and inference

e In regression, however, observations far from the mean of the
covariate have much greater influence over the model fit

e This is essentially what ||x;|| is measuring: in words, we are
requiring that no one observation can exhibit too great an
influence
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Regression

Simulation

This is one of those situations where theory helps to guide
intuition and practice
Let's carry out a simulation to illustrate
We will challenge the central limit theorem in two ways:
o w will follow a t distribution with v degrees of freedom
o The elements of X will be uniformly distributed (from -1 to 1)

except for the first two elements of column 1, which will be set
to ta

In what follows, n = 100 unless otherwise noted; 1000
simulations were run for each example

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 18 / 23



Regression

lllustration of the two conditions (v = 3,a = 5)

Normal —— t

20

|
4 2 0 2 4 !
XX
As we will see, the more comfortably the Lindeberg condition
holds, the faster the rate of convergence to normality
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Regression

Results: v =50,a =5

Influential observations, but & close to normal
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Regression

Results: v =3,a =1

Heavy tails, but no terribly influential observations
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Regression

Results: v =3,a =5

Heavy tails and influential observations
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Regression

Results: v =3,a =5

Heavy tails and influential observations, but n = 1000
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