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Introduction

• Today we will introduce the multivariate normal distribution
and attempt to discuss its properties in a fairly thorough
manner

• The multivariate normal distribution is by far the most
important multivariate distribution in statistics

• It’s important for all the reasons that the one-dimensional
Gaussian distribution is important, but even more so in higher
dimensions because many distributions that are useful in one
dimension do not easily extend to the multivariate case
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Motivation

• In the univariate case, the family of normal distributions can
be constructed from the standard normal distribution through
the location-scale transformation µ + σZ, where Z ∼ N(0, 1);
the resulting random variable has a N(µ, σ2) distribution

• A similar approach can be taken with the multivariate normal
distribution, although some care needs to be taken with
regard to whether the resulting variance is singular or not
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Standard normal

• First, the easy case: if Z1, . . . , Zr are mutually independent
and each follows a standard normal distribution, the random
vector z is said to follow an r-variate standard normal
distribution, denoted z ∼ Nr(0, Ir)

• Remark: For multivariate normal distributions and identity
matrices, I will usually leave off the subscript from now on
when it is either unimportant or able to be figured out from
context

• If z ∼ Nr(0, I), its density is

p(z) = (2π)−r/2 exp{−1
2z⊤z}
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Multivariate possibilities

• Like the univariate case, we can construct multivariate
distributions through linear combinations

• Before we define the multivariate normal distribution,
however, note that there is no guarantee that the dimension
remains the same in such a transformation:

◦ Suppose z1, z2, z3
⊥⊥∼ N(0, 1)

◦ The dimension could decrease: x1 = z1 + 2z3, x2 = −z2
◦ Or increase:

x1 = z1 + 2z2

x2 = z1 − z2

x3 = z2 − z3

x4 = z1 + z2 + z3
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Multivariate normal distribution

• Definition: Let x be a d × 1 random vector with mean vector
µ and covariance matrix Σ, where rank(Σ) = r > 0. Let Γ
be a r × d matrix such that Σ = Γ⊤Γ. Then x is said to have
a d-variate normal distribution of rank r if its distribution is
the same as that of the random vector µ + Γ⊤z, where
z ∼ Nr(0, I).

• This is typically denoted x ∼ Nd(µ, Σ)
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Density

• Suppose x ∼ Nd(µ, Σ) and that Σ is full rank; then x has a
density:

p(x|µ, Σ) = (2π)−d/2|Σ|−1/2 exp{−1
2(x − µ)⊤Σ−1(x − µ)},

where |Σ| denotes the determinant of Σ
• We will not really concern ourselves with determinants and

their properties in this course, although it is worth pointing
out that if Σ is singular, then |Σ| = 0 and the above result
does not hold (or even make sense)
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Singular case

• In fact, if Σ is singular, then x does not even have a density
• This is connected to our earlier discussion of the Lebesgue

decomposition theorem: if Σ is singular, then the distribution
of x is singular (not discrete, but also doesn’t have a density)

• This is the reason why the MVN must be constructed as we
did — we can’t define the distribution by its density, we must
instead say that it has the same distribution as µ + Γ⊤z,
where z has a well-defined density
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Moment generating function

• For this reason, when working with multivariate normal
distributions or showing that some random variable y follows
a multivariate normal distribution, it is often easier to work
with moment generating functions or characteristic functions,
which are well-defined even if Σ is singular

• If x ∼ Nd(µ, Σ), then its moment generating function is

m(t) = exp{t⊤µ + 1
2t⊤Σt},

where t ∈ Rd

• We’ll come back to its characteristic function in a future
lecture
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Partitioned matrices

• We will often partition vectors and matrices in this class
• The idea of a partitioned matrix is to think of a large matrix

as a collection of smaller submatrices:

A =


1 2 2 7
1 5 6 2
3 3 4 5
3 3 6 7


can be partitioned into four 2 × 2 blocks

A =
[
A11 A12
A21 A22

]
, where A11 =

[
1 2
1 5

]
, A12 =

[
2 7
6 2

]
, . . .
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Transposing partitioned matrices

• The transpose of a partitioned matrix is

A⊤ =
[
A⊤

11 A⊤
21

A⊤
12 A⊤

22

]

• Note that if A is symmetric, as in the case of a covariance
matrix or matrix of second derivatives, then

A⊤
12 = A21
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“Middle” partitions

• It is easy to visualize a partition when each corner is a block
• However, “middle” partitions are also common; for example

A =

1 2 3
4 5 6
7 8 9


could be partitioned so that A22 is isolated; in that case
A2,−2 = [4 6] would be equivalent to A12 in a “corner”
partition

• We’ll return to this point later when we discuss conditional
distributions
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Permutation matrices

• Alternatively, you could think about reordering the matrix
prior to partitioning it so that the portion you wish to isolate
is in the corner, not the middle

• Formally, this would involve multiplication by a permutation
matrix: a square matrix with exactly one entry equal to 1 in
each row and each column and all other entries equal to 0

• An important fact to be aware of is that for any permutation
matrix P and invertible matrix A

(PAP⊤)−1 = PA−1P⊤

(in other words, the inverse of the reordered matrix is the
same as reordering the inverse)
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Why are partitioned matrices important?

• Partitioned matrices are important for many reasons, but one
reason they are particularly important in this class is because
of nuisance parameters

• In multiparameter problems, we are rarely interested in
inference for all parameters simultaneously

• Instead, only a subset are typically of interest, and the
remaining parameters are considered “nuisance parameters”
— we then partition the parameter space (and the
corresponding information matrices) accordingly
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Independence

• Before moving on, let us note that there is a connection
between covariance and independence in the multivariate
normal distribution

• Theorem: Suppose x ∼ Nd(µ, Σ). If x = (x1; x2) and the
corresponding off-diagonal of Σ12 is zero, then x1 and x2 are
independent.

• In particular, if Σ is a diagonal matrix, then x1, . . . , xn are
mutually independent
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Independence (caution)

• It is worth pointing out a common mistake here:
Cov(X1, X2) = 0 =⇒ X1 ⊥⊥ X2 only if X1 and X2 are
multivariate normal

• For example, suppose X ∼ N(0, 1) and Y = ±X, each with
probability 1

2
• X and Y are both normally distributed, and Cov(X, Y ) = 0,

but they are clearly not independent
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Linear combinations

• A very important property of the multivariate normal
distribution is that its linear combinations are also normally
distributed

• Theorem: Let b be a k × 1 vector of constants, B a k × d
matrix of constants, and x ∼ Nd(µ, Σ). Then

b + Bx ∼ Nk(Bµ + b, BΣB⊤).
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Corollary

• A useful corollary of this result is that we can always
“standardize” a variable with an MVN distribution

• Let’s consider the full-rank case first (i.e., Σ is nonsingular
and positive definite, and so is Σ−1)

• Corollary: Let x ∼ Nd(µ, Σ). Then

Σ−1/2(x − µ) ∼ Nd(0, I),

where Σ−1/2 is the square root of Σ−1.
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Corollary: Low rank case

• If Σ is singular, then Σ−1/2 does not exist, although we can
still standardize the distribution

• Corollary: Let x ∼ Nd(µ, Σ), where Σ is rank r with
Γ⊤Γ = Σ. Then

(ΓΓ⊤)−1Γ(x − µ) ∼ Nr(0, I).
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Quadratic forms

• In the univariate case, if Z ∼ N(0, 1), then Z2 follows a
distribution known as the χ2 distribution

• Furthermore, if Z1, . . . , Zn are mutually independent and each
Zi ∼ N(0, 1), then

∑
i Z2

i ∼ χ2
n, where χ2

n denotes the χ2

distribution with n degrees of freedom
• Thus, it is a straightforward consequence of our previous

corollaries that if x ∼ Nd(0, Σ) and Σ is nonsingular,

x⊤Σ−1x ∼ χ2
d
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Quadratic forms: low rank

• Similarly, it is always the case that if x ∼ Nd(0, Σ) with
Σ = Γ⊤Γ, then

x⊤Σ−x ∼ χ2
r ,

where r is the rank of Σ and

Σ− = Γ⊤(ΓΓ⊤)−1(ΓΓ⊤)−1Γ

• As discussed in our review last time, Σ− is a quantity known
as a generalized inverse, which you’ll learn more about in the
linear models course
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Non-central chi square distribution

• If µ ̸= 0, then the quadratic form follows something called a
non-central χ2 distribution

• If Z1, . . . , Zn
⊥⊥∼ N(µi, 1), then the distribution of

∑
i Z2

i is
known as the noncentral χ2

n distribution with noncentrality
parameter

∑
i µ2

i

• Thus, if x ∼ Nd(µ, Σ), we have

x⊤Σ−1x ∼ χ2
d(µ⊤Σ−1µ),

or

x⊤Σ−x ∼ χ2
r(µ⊤Σ−µ)

if Σ is singular
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Marginal distributions

• Finally, let us consider some results related to partitions of the
multivariate normal distribution:

x =
[

x1
x2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]

• Conveniently, the marginal distributions are exactly what you
would intuitively think they should be:

x1 ∼ N(µ1, Σ11)
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Conditional

• A more complicated question: what is the distribution of x1
given x2?

• This gets messy if Σ is singular, but if Σ is full rank, then

x1|x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
• As mentioned earlier, note that if Σ12 = 0, then x1 and x2

are independent and x1|x2 ∼ N(µ1, Σ11);
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Schur complement

• The quantity Σ11 − Σ12Σ−1
22 Σ21 is known in linear algebra as

the Schur complement; it comes up all the time in statistics
and we will see it repeatedly in this course

• It is the inverse of the (1, 1) block of Σ−1; more explicitly,
letting Θ = Σ−1,

Θ−1
11 = Σ11 − Σ12Σ−1

22 Σ21

• Conceptually, it represents the reduction in the variability of
x1 that we achieve by learning x2 (or equivalently, the
increase in our uncertainty about x1 if we don’t know x2)
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Precision matrix

• The inverse of the covariance matrix, Θ = Σ−1, is known as
the precision matrix and is a rather interesting quantity in its
own right

• In fact, many statistical procedures are more concerned with
estimating Θ than Σ

• One key reason for this is that Θ encodes conditional
independence relationships that are often of interest in
learning the structure of x in terms of how variables are
related to each other
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Conditional independence result

• Suppose we partition x into x1, containing two variables of
interest, and x2 containing the remaining variables

• Then by the results we’ve obtained already, if x ∼ N(µ, Σ),
then x1|x2 is multivariate normal with covariance matrix Θ−1

11
• Thus, if any off-diagonal element of Θ is zero, then the

corresponding variables are conditionally independent given
the remaining variables

• This is of interest in many statistical problems
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Example: X → Y → Z

# Conditional independence and the precision matrix
n <- 100000
x <- rnorm(n)
y <- x + rnorm(n)
z <- y + rnorm(n)
cbind(x, y, z) |> cor()
# x y z
# x 1.0000000 0.7061447 0.5762403
# y 0.7061447 1.0000000 0.8160535
# z 0.5762403 0.8160535 1.0000000
cbind(x, y, z) |> cor() |> solve()
# x y z
# x 1.994576e+00 -1.408516 6.940939e-05
# y -1.408516e+00 3.988160 -2.442908e+00
# z 6.940939e-05 -2.442908 2.993504e+00
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Application

• One application of this idea is in learning gene regulatory
networks

• Suppose the expression levels of various genes follow a
multivariate normal distribution (at least approximately)

• Learning which elements of Θ are nonzero corresponds to
learning which pairs of genes have a direct relationship with
one another, as opposed to being merely correlated through
the effects of other genes that affect them both
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