Likelihood with an incorrect model

Patrick Breheny

December 8, 2025

Introduction

- In this final week of class, we're going to look at what happens to the likelihood when you fit a model, but the true data-generating mechanism doesn't match that model (this is known as model misspecification)
- Today, we look at this from a theoretical perspective: what happens when the likelihood is not correct?
- Our final class will focus on using these insights for practical purposes and developing methods that work even when the model is incorrectly specified or not fully specified

All models are wrong...

- In the middle part of this course, we showed that the MLE has many attractive properties: it is consistent, asymptotically normal, and efficient
- All of those statements, however, are based on the assumption that the true distribution of the data lies within the family of probability distributions parameterized by our model
- In the real world, this is almost certainly never going to be the case
- So, what happens when we're wrong? How sensitive is the likelihood to our model being correct?

Terminology and notation

For this lecture (and the next), we are going to make a distinction between two probability distributions:

• True distribution: Also known as the data generation mechanism; we will denote this distribution P_* and use \mathbb{E}_* to denote expectations taken relative to this distribution:

$$\mathbb{E}_* g(X) = \int g(x) \, dP_*(x);$$

all expectations will be taken relative to this true distribution

• **Model distribution:** This is what we're assuming when we calculate the log-likelihood ℓ , score \mathbf{u} , and information \mathcal{I}

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 4 / 26

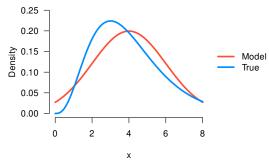
Terminology and notation (cont'd)

In other words, our notation mostly stays the same, but:

- There is no $heta^*$ anymore the true distribution of the data may have a completely different structure
- There is no ${\mathscr F}$ anymore either the variance of the score still exists, but we no longer have ${\mathbb V}{\mathbf u}={\mathbb E}{\mathcal I}$, so I will avoid calling anything the Fisher information because its interpretation is unclear

Example

- For example, suppose that $X \sim \operatorname{Gamma}(4,1)$, but we assume a normal distribution
- Clearly, the MLE will still converge, and in fact, converge to a distribution with the correct mean and variance, but obviously not to a gamma distribution:



Population log-likelihood

- Can we define the target that $\hat{ heta}$ converges to?
- Let's begin by noting that by the LLN,

$$\frac{1}{n} \sum \ell(\boldsymbol{\theta} \mid x_i) \stackrel{P}{\longrightarrow} \mathbb{E}_* \ell(\boldsymbol{\theta} \mid X)$$

 The quantity on the right is known as the expected log-likelihood, or population log-likelihood; note that it is determined by both the true distribution and the assumed model

Argmax theorem

• We can then define $heta_*$ as the parameter that maximizes the population log-likelihood:

$$\boldsymbol{\theta}_* = \arg \max \mathbb{E}_* \ell(\boldsymbol{\theta} \mid X)$$

- Argmax theorem: Suppose $\mathbb{E}_*\ell(\theta \mid X)$ exists for all θ in a compact parameter space Θ . If
 - 1. $\frac{1}{n}\sum \ell(\boldsymbol{\theta}\,|\,x_i) \stackrel{\mathrm{P}}{\longrightarrow} \mathbb{E}_*\ell(\boldsymbol{\theta}\,|\,X)$ uniformly for all $\boldsymbol{\theta}\in\boldsymbol{\Theta}$,
 - 2. $\widetilde{\mathbb{E}}_*\ell(\boldsymbol{\theta}\,|\,X)$ is continuous and has a unique maximizer $\boldsymbol{\theta}_*$, then

$$\hat{m{ heta}} \stackrel{ ext{P}}{\longrightarrow} m{ heta}_*.$$

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 8 / 26

Technical remarks

- In order for the convergence to hold uniformly, two conditions must hold:
 - \circ The likelihood $\ell(\pmb{\theta}\,|\,x)$ must be a continuous function of $\pmb{\theta}$ for each x
 - $|\ell(\theta \mid x)| \le h(x)$ for all x and θ , where h is integrable with respect to P_*
- The argmax theorem is stated for compact parameter spaces, but in practice we only need the estimator to fall in a compact region with high probability

Connection to Kullback-Liebler

• Note that maximizing $\mathbb{E}_*\ell(m{ heta}\,|\,X)$ is the same thing as minimizing

$$\mathbb{E}_* \log p_*(X) - \mathbb{E}_* \log p_{\theta}(X)$$

- In other words, maximizing the likelihood is equivalent to finding the model that is closest to the true distribution in the sense of Kullback-Liebler "distance"
- This distribution is known as the KL projection onto the model space

... but some are useful?

- Is the KL projection useful, scientifically?
- Maybe? For example, in the Gamma case, we still get consistent estimates of the mean and variance
- Maybe not? But we don't get consistent estimates of, say, the skewness or kurtosis
- Of course, this doesn't mean that we still have an efficient estimate (in the Gamma example, our estimate of the mean is 12% less efficient if we use a normal model instead of the true Gamma model)

Distribution of the MLE under misspecification

- We've now seen how model misspecification affects the consistency of the MLE; what about its asymptotic normality?
- Theorem: Let $x_i \stackrel{\text{iid}}{\sim} P_*$ and θ_* denote the unique maximizer of the population log-likelihood. If
 - 1. The likelihood of the assumed model is continuously differentiable up to third order with bounded third derivatives in a neighborhood of θ_*
 - 2. $\mathbb{E}_* \nabla^2 \ell(\boldsymbol{\theta}_*)$ exists and is nonsingular,
 - 3. The conditions of the argmax theorem are met, then the MLF $\hat{\theta}$ satisfies

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_*) \overset{\mathrm{d}}{\longrightarrow} \mathrm{N}(\mathbf{0}, \mathbf{B}^{-1}\mathbf{M}\mathbf{B}^{-1}),$$
 where $\mathbf{B} = -\mathbb{E}_* \nabla^2 \ell(\boldsymbol{\theta}_* \,|\, X)$ and $\mathbf{M} = \mathbb{V}_* \mathbf{u}(\boldsymbol{\theta}_* \,|\, X)$

Using this result for inference

- This result is not merely of theoretical interest it suggests an alternative way to estimate standard errors for maximum likelihood
- Note that if the model is correctly specified, then $\mathbf{B} = \mathbf{M} = \mathbf{\mathscr{I}}$, and we have the usual MLE result
- However, provided that we can estimate ${\bf B}$ and ${\bf M}$, we now have an alternative: to use ${\bf B}^{-1}{\bf M}{\bf B}^{-1}$ instead of the information when carrying out tests and constructing confidence intervals

The sandwich estimator

- The quantity ${f B}^{-1}{f M}{f B}^{-1}$ goes by many different names:
 - Huber–White estimator
 - Robust variance
 - Empirical variance
 - Godambe information
- But nowadays is usually referred to as the sandwich estimator (the "meat" ${\bf M}$ is sandwiched between two slices of "bread" ${\bf B}$)
- Note: The notation ${\bf A}^{-1}{\bf B}{\bf A}^{-1}$ is more common in theoretical works

Methods that utilize sandwich estimators

- Robust (sandwich) estimators of the variance are formed in a wide variety of situations where it is desirable for the standard errors to be protected against certain forms of model misspecification:
 - Generalized estimating equations
 - Robust regression
 - Pseudo-likelihood
 - Composite likelihood
 - Survey-weighted estimators
 - Generalized method of moments
- We will explore some of these methods on Wednesday

Conceptual understanding of the sandwich

- Conceptually, the bread and meat are measuring different aspects of the information
- The bread measures the sensitivity of the score to the parameters:

$$\mathbf{B} = -\mathbb{E}_* \partial \mathbf{u} / \partial \boldsymbol{\theta}$$

• The meat measures the randomness of the score:

$$\mathbf{M} = \mathbb{E}_*\{\mathbf{u}(\boldsymbol{\theta} \,|\, \boldsymbol{X})\mathbf{u}(\boldsymbol{\theta} \,|\, \boldsymbol{X})^\top\}$$

 Increased sensitivity causes the variance of our estimate to decrease, while increased randomness causes it to increase:

$$\mathbb{V}\hat{\boldsymbol{\theta}} = \mathbf{B}^{-1}\mathbf{M}\mathbf{B}^{-1}$$

The bread

 Estimating the bread is straightforward — the mean of the Hessian is almost always used:

$$\hat{\mathbf{B}} = -\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} \ell(\boldsymbol{\theta} \mid x_{i})$$

The meat

- Estimating the meat, on the other hand, is more challenging as it involves a variance
- If the data are independent (even if they're not iid), then we can simply use the sample variance of the score:

$$\hat{\mathbf{M}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}(\boldsymbol{\theta} \mid x_i) \mathbf{u}(\boldsymbol{\theta} \mid x_i)^{\top}$$

 However, if the data are no longer independent, some care needs to be taken (time series data must account for autocorrelation, longitudinal data must average across subjects, etc.)

Arguments for robust inference

- Many statisticians have argued that these robust standard errors should be the default for all inference
- If the model is correct, the two estimates coincide (asymptotically), and if the model is wrong, you have a safety net if you, say, specify the variance incorrectly
- Their argument is basically: Using the information (the non-robust SE) is unnecessary and potentially harmful; robust SEs cost nothing and protect against a wide class of model misspecification

Arguments against robust inference

- At the same time, other statisticians have criticized the widespread use of sandwich estimators
- The core critique is: If the model is wrong, inference about θ_* may be meaningless why should we care about asymptotically correct standard errors for a parameter that is only defined through misspecification?*
- David Freedman (2006): "It remains unclear why applied workers should care about the variance of an estimator for the wrong parameter."

Fix the model, not the SE

- There isn't a clear right or wrong answer here both arguments are strong — but it is important to remember that robust SEs don't fix everything
- Using the robust SE is a convenient shortcut, but it shouldn't replace model checking, influence diagnostics, and inspection of residuals
- Ultimately, fixing the underlying problems with the model will always be better that merely adjusting the standard errors

Partially specified models

- The analysis of misspecified models is easily extended to the question of partially specified models
- In particular, the two theorems we have covered today provide the foundation for an alternative approach to modeling in which we don't specify the likelihood — we only specify the score equations
- This idea goes by a few different names in the statistical literature:
 - Estimating equations
 - Quasi-likelihood
 - "M-estimation" (because it's kind of like an MLE)

Why estimating equations?

- Why would we want to only specify part of the model?
- Typically, because it makes inference modular: you can separate modeling the mean (which you probably care about) from modeling the variance (which you might not)

Definition

• Specifically, given data x_1, \ldots, x_n , suppose we intend to estimate parameters θ by solving the estimating equation

$$\sum_{i} \boldsymbol{\psi}(\boldsymbol{\theta} \,|\, y_i) = \mathbf{0},$$

where $oldsymbol{\psi}: \mathbb{R}^d
ightarrow \mathbb{R}^d$ is a known function

ullet Perhaps ψ is the score function of some likelihood, but we are not bothering to specify that likelihood

Modifications for estimating equations

The concepts and proofs are almost exactly the same as what we've just seen, with the following minor changes:

• The "true" parameter θ_* is now defined as the solution to

$$\mathbb{E}\boldsymbol{\psi}(\boldsymbol{\theta}\,|\,X) = \mathbf{0}$$

- The bread and meat of the sandwich estimator are now
 - \bullet **B** = $-\mathbb{E}\nabla\psi(\boldsymbol{\theta}\mid X)$
 - $\bullet \mathbf{M} = \mathbb{E}\{\psi(\boldsymbol{\theta} \mid X)\psi(\boldsymbol{\theta} \mid X)^{\top}\}\$

Modifications for estimating equations (cont'd)

• Given these changes and corresponding modifications to the regularity conditions, we again have $\hat{m{ heta}} \stackrel{P}{\longrightarrow} {m{ heta}}_*$ and

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_*) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(\mathbf{0}, \mathbf{B}^{-1}\mathbf{M}\mathbf{B}^{-1})$$

- We have seen today that sandwich estimators provide the correct variance, even when the model is misspecified
- Next lecture, we will see examples of estimating equations, quasi-likelihood, pseudo-likelihood, and composite likelihood, all of which will utilize the theory we developed today