Conditional likelihood

Patrick Breheny

November 12, 2025

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 1 / 3

Definition

Example: Poisson relative risk

Example: Repeated regression

Introduction

- Today we're going to discuss an alternative approach to likelihood-based inference called conditional likelihood
- The main idea is that while the data may depend on both our parameters of interest θ and nuisance parameters η , perhaps we can transform the data in such a way that we can factor the likelihood into a conditional distribution depending only on θ

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 2 / 31

Conditional likelihood: Definition

ullet Specifically, suppose we can transform the data x into v and w such that

$$p(x|\boldsymbol{\theta}, \boldsymbol{\eta}) = p(v|w, \boldsymbol{\theta})p(w|\boldsymbol{\theta}, \boldsymbol{\eta})$$

- The first term, $L(\theta) = p(v|w, \theta)$, is known as the *conditional likelihood*; note that this term is free of nuisance parameters
- Note that, unlike the profile likelihood, the conditional likelihood is an actual likelihood, in the sense that it corresponds to an actual distribution of observed data

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 3 / 31

Sufficiency

- Recall that w is sufficient for η if the conditional distribution of $x \mid w$ does not depend on η in other words, we can always construct a conditional likelihood if there is a sufficient statistic for the nuisance parameters
- Note that in order to calculate the conditional likelihood, we need to derive the marginal distribution of w:

$$egin{aligned} \ell(oldsymbol{ heta}, oldsymbol{\eta}) &= \ell_c(oldsymbol{ heta}) + \ell_m(oldsymbol{ heta}, oldsymbol{\eta}) \ \Longrightarrow \ \ell_c(oldsymbol{ heta}) &= \ell(oldsymbol{ heta}, oldsymbol{\eta}) - \ell_m(oldsymbol{ heta}, oldsymbol{\eta}), \end{aligned}$$

where ℓ_c is the conditional log-likelihood and ℓ_m is the likelihood based on the marginal distribution of w

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 4 /

Information loss

- ullet Note that $oldsymbol{ heta}$ also appears in the marginal likelihood $\ell_m(oldsymbol{ heta},oldsymbol{\eta})$
- By focusing solely on the conditional likelihood $\ell_c(\theta)$, we are potentially throwing away information about θ
- Note that the concern here is efficiency, not validity
 - The conditional likelihood is a true likelihood, so all of our likelihood results hold
 - \circ However, the conditional information might carry less information (larger variance) about θ than the full or profile likelihood
- We'll go through two examples one where this is not a problem and one where it is

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 5 / 31

Poisson model

Suppose we have two independent Poisson random variables:

$$X \sim \text{Pois}(\lambda)$$

$$Y \sim \text{Pois}(\mu)$$

and suppose that we are interested in the relative risk $\theta=\mu/\lambda$

• One way of approaching this problem would be to derive the full likelihood $L(\lambda, \mu)$, then use likelihood theory and the delta method to derive the distribution of θ :

$$\frac{\hat{\theta} - \theta}{\text{SE}} \xrightarrow{\text{d}} \text{N}(0, 1),$$

where
$$SE^2 = (\mu^2 + \mu\lambda)/\lambda^3$$
, as $\mu, \lambda \to \infty$

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 6 / 31

Conditional likelihood

• However, suppose we instead let t=x+y and then proceeded along these lines:

$$\begin{aligned} p(x,y|\lambda,\mu) &= p(y,t|\lambda,\mu) \\ &= p(y|t,\lambda,\mu) p(t|\lambda,\mu) \end{aligned}$$

- The second term, we will just ignore; the first term is the conditional likelihood
- Writing the conditional likelihood in terms of θ , we have

$$L_c(\theta) = \left(\frac{1}{1+\theta}\right)^x \left(\frac{\theta}{1+\theta}\right)^y;$$

note that this likelihood is free of nuisance parameters

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 7 / 31

Orthogonal parameters

- Are we losing information about θ ?
- In this particular case, we are losing nothing: letting $\eta = \lambda + \mu$, we can write

$$L(\theta, \eta) = L_c(\theta) L_m(\eta)$$

- In other words, θ does not show up in the part of the likelihood that we are ignoring
- When such a factorization exists, the parameters θ and η are said to be *orthogonal parameters*

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 8 / 31

Estimation and inference

- Now we can just carry out all the usual likelihood operations on the conditional likelihood
- The score is

$$u(\theta) = y/\theta - t/(1+\theta),$$

so $\hat{\theta}=y/x$, which seems like the obvious estimator

 The information, in this case, yields the same approximate variance as the delta method

$$\mathcal{I}(\theta) = \frac{y}{\theta^2} - \frac{t}{(1+\theta)^2},$$

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 9 / 31

Exact inference

 In the Poisson case, however, we don't really need asymptotic approximations, as we can carry out exact inference based on the conditional relationship

$$Y|T \sim \operatorname{Binom}\left(T, \frac{\theta}{1+\theta}\right)$$

- Exact tests and confidence intervals for the binomial proportion could then be constructed and transformed to give confidence intervals for θ
- This is often true, generally speaking, for conditional likelihood approaches: non-asymptotic methods are often available, albeit not always so easily calculated

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 10 / 31

Profile likelihood

- \bullet Yet another way of approaching this problem is to derive the profile likelihood of θ
- In this case, we end up with the same likelihood as the conditional approach:

$$L(\theta) = \left(\frac{1}{1+\theta}\right)^x \left(\frac{\theta}{1+\theta}\right)^y$$

 This is only true in the case of orthogonal parameters, however (i.e., only if the nuisance parameters can be factored out does the profile likelihood automatically produce a conditional likelihood)

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 11 / 31

Repeated regression

- For our second example, consider the case of simple linear regression with repeated entries
- In other words, $y_{i1}, y_{i2} \stackrel{\perp}{\sim} \mathrm{N}(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$ for $i = 1, \ldots, n$: ordinary regression but we observe two independent outcomes for each covariate pattern
- The conditional distribution of $\{y_{i1}, y_{i2}\}$ given the sum $y_{i1} + y_{i2}$ depends only on σ^2 , so one potential approach would be to maximize this conditional likelihood

Efficiency

In this scenario, the MLE of the conditional likelihood is

$$\hat{\sigma}_c^2 = \frac{1}{2n} \sum_{i=1}^n (y_{i1} - y_{i2})^2$$

• However, the distribution of the sums $y_{i1} + y_{i2}$ also has quite a bit of information about σ^2 , and ignoring it results in a worse estimator:

Likelihood	Bias	Variance	MSE
Profile	-0.24	1.20	1.25
Conditional	0.03	2.52	2.52

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 13 / 31

Neyman-Scott problem

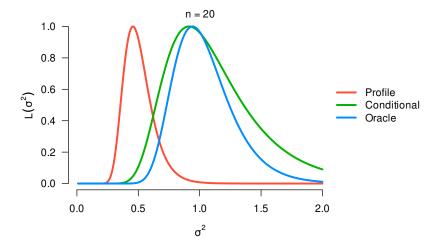
- However, a very different phenomenon happens when the regression coefficients differ for each pair
- Consider the Neyman-Scott problem where

$$y_{i1}, y_{i2} \stackrel{\perp}{\sim} \mathrm{N}(\mu_i, \sigma^2)$$

- In this scenario, the bias of the ordinary/profile MLE is a big problem and doesn't go away as n increases (recall from a previous HW assignment that the MLE is not consistent)
- The MLE of the conditional likelihood, on the other hand, is not only consistent but unbiased

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 14 / 31

Illustration



Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 15 / 3

Remarks

- As the figure indicates, we are certainly losing information (compared to the oracle) by not knowing the μ_i parameters; indeed, the information loss is 50%
- The profile likelihood is narrower, but:
 - It's centered on the wrong point entirely
 - The regularity conditions don't hold, so none of our inferential results hold

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 16 / 31

When conditional likelihood is appealing

In general, conditional likelihood is appealing when:

- The full / profile likelihood is inconsistent / biased / unstable
- The conditional likelihood is simpler than the original model
- Not much information is lost by ignoring part of the likelihood
 - Often, this is difficult to calculate and "how much information is lost" is more of an intuitive / informal argument

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 17 / 31

Regression

- For example, the most widespread use of conditional likelihood is probably in regression analysis
- It is often the case that both the predictor ${\bf X}$ and the outcome ${\bf y}$ are random variables
- We could specify the joint distribution of X and y, but there
 would be many parameters involved in defining the distribution
 of X and these parameters are not of interest in regression
- By considering instead the conditional distribution (conditional likelihood) of y|X, these nuisance parameters are eliminated
- Some information is lost, but (a) not much and (b) we would need a lot of assumptions to access it

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 18 / 31

Binomial proportions

- Another very common application of conditional likelihood is for comparing two binomial proportions: $X \sim \operatorname{Binom}(n_1, \pi_1)$ and $Y \sim \operatorname{Binom}(n_2, \pi_2)$, with $X \perp \!\!\! \perp Y$, and our interest is in the odds ratio θ
- By conditioning on the total T=X+Y, we arrive at a conditional distribution for X|T containing only the odds ratio that we can use as our conditional likelihood:

$$p(x|t) = \frac{\binom{n_1}{x}\binom{n_2}{t-x}\theta^x}{\sum_{s=0}^t \binom{n_1}{s}\binom{n_2}{t-s}\theta^s}$$

Connection with hypergeometric distribution

- At $\theta=1$ the conditional distribution is the hypergeometric distribution
- Thus, we could carry out non-asymptotic inference on the basis of this distribution; this is known as Fisher's exact test
- We could also use any of our asymptotic likelihood approaches

Score test

- The score test is particularly convenient to apply, since the likelihood is simplified considerably at the null hypothesis $\theta=1$
- Letting μ and σ denote the mean and standard deviation of the (n_1,n_2,t) hypergeometric distribution, the score test statistic is

$$z = \frac{x - \mu}{\sigma}$$

 Confidence intervals would involve the use of noncentral hypergeometric distributions

Matched pairs, binary outcome

- On a related note, let's consider the question of matched pairs of subjects with a binary outcome (the discrete version of the Neyman-Scott problem)
- Suppose we have n pairs of observations with Y_{i1} and Y_{i2} representing independent binary outcomes, and our probability model is

$$logit(\pi_{i1}) = \alpha_i$$
$$logit(\pi_{i2}) = \alpha_i + \beta;$$

this would arise, for example, in a study of identical twins where one was exposed to a risk factor and the other was not

Profile likelihood bias

- Our interest is the odds ratio e^{β} , but as in the Neyman-Scott problem, the number of nuisance parameters is growing with n
- This causes problems with the profile likelihood: letting a denote with number of $\{Y_{i1}=1,Y_{i2}=0\}$ pairs and b denote with number of $\{Y_{i1}=0,Y_{i2}=1\}$ pairs,

$$\hat{\alpha}_i(\beta) = -\beta/2$$

$$\hat{\beta} = 2\log\frac{b}{a}$$

$$\widehat{OR} = \left(\frac{b}{a}\right)^2$$

• The estimator (b/a) is known to be consistent, so the MLE here converges to OR^2 , highly biased if $OR \neq 1$

Conditional likelihood to the rescue

- Using conditional likelihood, however, this problem is avoided
- Within each table, we can condition on $y_{i1} + y_{i2}$, arriving at a Bernoulli distribution if the pair is informative
- Since pairs are independent of each other, the total likelihood is then

$$\ell(\theta) = \sum_{i} \ell_i(\theta)$$

- The result is that b has a binomial likelihood conditional on a+b and the MLE is now consistent
- In this context, the score test is known as McNemar's test

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 24 / 31

General 2×2 tables

- The same logic works for more general 2×2 tables
- Here, each table's conditional likelihood corresponds to the hypergeometric distribution and the log-likelihood from these tables are again additive
- Again, the score test is particularly convenient:

$$z = \frac{\sum_{i} (x_i - \mu_i)}{\sqrt{\sum_{i} \sigma_i^2}},$$

where μ_i and σ_i^2 are the mean and variance of the hypergeometric distribution for table i

This is known as the Mantel-Haenzel test

Generality of conditional likelihood

- So, is conditional likelihood a general method, or only available in specialized cases?
- To some extent, both
- On the one hand, it is always possible to derive a conditional likelihood for exponential families; however, the resulting likelihood may be rather complicated

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 26 / 31

Exponential family: Setup

• Letting $\mathbf{v} = \mathbf{s}_1(x)$ and $\mathbf{w} = \mathbf{s}_2(x)$ denote the sufficient statistics of the exponential family,

$$p(\mathbf{v}, \mathbf{w}) = \exp\{\boldsymbol{\theta}^{\top} \mathbf{v} + \boldsymbol{\eta}^{\top} \mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)$$

- To derive the conditional likelihood, we first need to derive the marginal distribution of w
- We can obtain this by summing (or integrating) $p(\mathbf{v}, \mathbf{w})$ over the set $\{x : \mathbf{s}_2(x) = \mathbf{w}\}$

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 27/31

Exponential family: Conditional likelihood

The conditional likelihood then arises from

$$p(\mathbf{v}|\mathbf{w}) = p(\mathbf{v}, \mathbf{w})/p(\mathbf{w})$$

$$= \frac{\sum_{x:\mathbf{s}_1(x)=\mathbf{v},\mathbf{s}_2(x)=\mathbf{w}} \exp\{\boldsymbol{\theta}^{\top}\mathbf{v} + \boldsymbol{\eta}^{\top}\mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)}{\sum_{x:\mathbf{s}_2(x)=\mathbf{w}} \exp\{\boldsymbol{\theta}^{\top}\mathbf{s}_1(x) + \boldsymbol{\eta}^{\top}\mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)}$$

$$= \frac{\sum_{x:\mathbf{s}_1(x)=\mathbf{v},\mathbf{s}_2(x)=\mathbf{w}} \exp\{\boldsymbol{\theta}^{\top}\mathbf{v}\} f_0(x)}{\sum_{x:\mathbf{s}_2(x)=\mathbf{w}} \exp\{\boldsymbol{\theta}^{\top}\mathbf{s}_1(x)\} f_0(x)}$$

- The likelihood is free of η
- ullet Sums would be replaced by integrals if x was continuous

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 28 / 31

Conditional logistic regression

- A common application of this idea is the logistic regression setting
- Consider the model $Y_i \sim \operatorname{Bern}(\pi_i)$ with

$$\log \frac{\pi_i}{1 - \pi_i} = \alpha + \beta x_i$$

The probability model is therefore

$$\log p(\mathbf{y}) = \alpha \sum_{i} y_i + \beta \sum_{i} x_i y_i - \sum_{i} \log(1 + \exp\{\alpha + \beta x_i\})$$

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 29 / 31

Conditional logistic regression (cont'd)

• Letting $v=\sum x_iy_i$ and $w=\sum y_i$, this is an exponential family, and we have the conditional likelihood

$$L(\beta) = \frac{\exp(\beta v)}{\sum_{u} \exp(\beta u)},$$

where the sum in the denominator is over all values of $u=\sum x_iy_i^*$ such that $\sum y_i^*=w$, where y_i^* represents potential values that the random variable Y_i could have taken

- Since the y_i^* values are all 0 or 1, this corresponds to the permutations of ${\bf y}$
- Similar to what we've seen before, this is particularly appealing when the data is matched or paired; this is probably the most common use of conditional logistic regression

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 30 / 31

Remarks

- The usual likelihood-based approaches to inference can now be applied, although we face a computational challenge in terms of evaluating $\sum \exp(\beta x_i y_i)$ over all possible permutations of \mathbf{y}
- Nevertheless, fast algorithms have been developed to tackle this problem and the method (known as conditional logistic regression) is widely implemented in statistical software
- We focused on the simple regression case here, but the idea can be extended to multivariate settings as well
- Futhermore, exact approaches to inference are possible using permutation tests (as in our earlier examples)

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 31 / 31