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Introduction

Introduction

e Today we're going to discuss an alternative approach to
likelihood-based inference called conditional likelihood

e The main idea is that while the data may depend on both our
parameters of interest @ and nuisance parameters 7, perhaps
we can transform the data in such a way that we can factor
the likelihood into a conditional distribution depending only
on 6
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Introduction

Conditional likelihood: Definition

e Specifically, suppose we can transform the data x into v and
w such that

p(z]0,7m) = p(v|w, O)p(w|0,n)

e The first term, L(0) = p(v|w, @), is known as the conditional
likelihood, note that this term is free of nuisance parameters

o Note that, unlike the profile likelihood, the conditional
likelihood is an actual likelihood, in the sense that it
corresponds to an actual distribution of observed data
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Introduction

Sufficiency

e Recall that w is sufficient for 7 if the conditional distribution
of x| w does not depend on 1 — in other words, we can
always construct a conditional likelihood if there is a sufficient
statistic for the nuisance parameters

e Note that in order to calculate the conditional likelihood, we
need to derive the marginal distribution of w:

0(0,m) = L.(0) + £m(0,m)
— 60(0) = 6(0, 77) - Em(07n)a

where £, is the conditional log-likelihood and /,,, is the
likelihood based on the marginal distribution of w
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Introduction

Information loss

Note that @ also appears in the marginal likelihood ¢,,(6,n)
By focusing solely on the conditional likelihood ¢.(8), we are
potentially throwing away information about 6

Note that the concern here is efficiency, not validity
o The conditional likelihood is a true likelihood, so all of our
likelihood results hold
o However, the conditional information might carry less
information (larger variance) about @ than the full or profile
likelihood
We'll go through two examples — one where this is not a
problem and one where it is
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Introduction Definition
Example: Poisson relative risk
Example: Repeated regression

Poisson model

e Suppose we have two independent Poisson random variables:

X ~ Pois(A)
Y ~ Pois(u)

and suppose that we are interested in the relative risk = /A

e One way of approaching this problem would be to derive the
full likelihood L(\, ), then use likelihood theory and the delta
method to derive the distribution of 6:

6—0 4
S—E_>N(O’1)’

where SE? = (u? + pu\) /A3, as p, A — 0o
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Introduction Definition
Example: Poisson relative risk
Example: Repeated regression

Conditional likelihood

e However, suppose we instead let t = x 4+ y and then
proceeded along these lines:

p(z,y|\ 1) = ply, tIA, 1)
= p(ylt, A, w)p(t|A, 1)

e The second term, we will just ignore; the first term is the
conditional likelihood
e Writing the conditional likelihood in terms of 8, we have

Le(#) = <1i0>x (1-?9)11;

note that this likelihood is free of nuisance parameters
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Introduction Definition
Example
Example: R

Orthogonal parameters

Are we losing information about 67
In this particular case, we are losing nothing: letting
n = X+ u, we can write

L(Q, 77) = Lc(e)Lm(T/)

In other words, 6 does not show up in the part of the
likelihood that we are ignoring

When such a factorization exists, the parameters 6 and 7 are
said to be orthogonal parameters
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Introduction Definition
Example
Example: R

Estimation and inference

e Now we can just carry out all the usual likelihood operations
on the conditional likelihood
e The score is

u(®) =y/0 —t/(1+0),

s0 0 = y/x, which seems like the obvious estimator
e The information, in this case, yields the same approximate
variance as the delta method

Y t

MO =5 v
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Introduction Definition
Example:
Example: Repeated

Exact inference

e In the Poisson case, however, we don’t really need asymptotic
approximations, as we can carry out exact inference based on
the conditional relationship

Y |T ~ Binom (T, %)

e Exact tests and confidence intervals for the binomial
proportion could then be constructed and transformed to give
confidence intervals for 6

e This is often true, generally speaking, for conditional
likelihood approaches: non-asymptotic methods are often
available, albeit not always so easily calculated
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Introduction Definition

Profile likelihood

e Yet another way of approaching this problem is to derive the
profile likelihood of 8

e |n this case, we end up with the same likelihood as the
conditional approach:

Le) = <141r9>x (1:9_0)1/

e This is only true in the case of orthogonal parameters,
however (i.e., only if the nuisance parameters can be factored
out does the profile likelihood automatically produce a
conditional likelihood)
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Introduction Definition
Example: Poisson relative risk
Example: Repeated regression

Repeated regression

e For our second example, consider the case of simple linear
regression with repeated entries

o In other words, y;1, yio ~ N(x]B,02) fori=1,...,n:
ordinary regression but we observe two independent outcomes
for each covariate pattern

e The conditional distribution of {y;1,y;2} given the sum
yi1 + yi2 depends only on o2, so one potential approach would
be to maximize this conditional likelihood
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Introduction Definition
Example son relative risk
Example: Repeated regression

Efficiency

e In this scenario, the MLE of the conditional likelihood is

1>
CZ_Z yzl_yﬂ
2”1:1

o However, the distribution of the sums y;1 + y;2 also has quite
a bit of information about o2, and ignoring it results in a
worse estimator:

Likelihood Bias Variance MSE

Profile -0.24 120 1.25
Conditional  0.03 252 252
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Introduction Definitio

: Repeated regression

Neyman-Scott problem

e However, a very different phenomenon happens when the
regression coefficients differ for each pair
e Consider the Neyman-Scott problem where

i1, via ~ N(ui, 0?)

e In this scenario, the bias of the ordinary/profile MLE is a big
problem and doesn’'t go away as n increases (recall from a
previous HW assignment that the MLE is not consistent)

e The MLE of the conditional likelihood, on the other hand, is
not only consistent but unbiased
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Example: Repeated regression

[[lustration
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Example n relative risk
Example: Repeated regression

RENMES

e As the figure indicates, we are certainly losing information
(compared to the oracle) by not knowing the p; parameters;
indeed, the information loss is 50%

e The profile likelihood is narrower, but:

o It's centered on the wrong point entirely
o The regularity conditions don't hold, so none of our inferential
results hold
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Example son relative risk
Example: Repeated regression

When conditional likelihood is appealing

In general, conditional likelihood is appealing when:
e The full / profile likelihood is inconsistent / biased / unstable
e The conditional likelihood is simpler than the original model

e Not much information is lost by ignoring part of the likelihood
o Often, this is difficult to calculate and “how much information
is lost” is more of an intuitive / informal argument
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Introduction Definitio
oisson relative risk
: Repeated regression

Regression

e For example, the most widespread use of conditional
likelihood is probably in regression analysis

e |t is often the case that both the predictor X and the
outcome y are random variables

e We could specify the joint distribution of X and y, but there
would be many parameters involved in defining the distribution
of X and these parameters are not of interest in regression

e By considering instead the conditional distribution (conditional
likelihood) of y|X, these nuisance parameters are eliminated

e Some information is lost, but (a) not much and (b) we would
need a lot of assumptions to access it
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Binomial proportions

2% 2
- iElites Matched pairs

Binomial proportions

e Another very common application of conditional likelihood is
for comparing two binomial proportions: X ~ Binom(ni, )
and Y ~ Binom(ng, m2), with X 1l Y, and our interest is in
the odds ratio 6

e By conditioning on the total T'= X + Y, we arrive at a
conditional distribution for X|T containing only the odds ratio
that we can use as our conditional likelihood:

ni n2 91
p($|t) = t( = )(Sztl_)gz)ng )93

s=0\ s/ \t—s
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Binomial proportions

2 > 2iglills Matched pairs

Connection with hypergeometric distribution

e At 0 = 1 the conditional distribution is the hypergeometric
distribution

e Thus, we could carry out non-asymptotic inference on the
basis of this distribution; this is known as Fisher's exact test

e We could also use any of our asymptotic likelihood approaches
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2% 2
- iElites Matched pairs

Score test

® The score test is particularly convenient to apply, since the
likelihood is simplified considerably at the null hypothesis
=1
e Letting 1 and o denote the mean and standard deviation of
the (n1,ne,t) hypergeometric distribution, the score test
statistic is
_r—n
- g

e Confidence intervals would involve the use of noncentral
hypergeometric distributions
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Binomial proportions

2 X2 .
= iElites Matched pairs

Matched pairs, binary outcome

e On a related note, let's consider the question of matched pairs
of subjects with a binary outcome (the discrete version of the
Neyman-Scott problem)

e Suppose we have n pairs of observations with Y;; and Yo
representing independent binary outcomes, and our probability
model is

logit(m;1) = a;
logit(me) = a; + B;

this would arise, for example, in a study of identical twins
where one was exposed to a risk factor and the other was not
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Binomial proportions

) :
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Profile likelihood bias

e Our interest is the odds ratio e”, but as in the Neyman-Scott
problem, the number of nuisance parameters is growing with n

e This causes problems with the profile likelihood: letting a
denote with number of {Y;; = 1,Y;2 = 0} pairs and b denote
with number of {Y;; = 0,Y;2 = 1} pairs,

&i(B) = —p/2
Bz 2log§
OR = (&)

e The estimator (b/a) is known to be consistent, so the MLE
here converges to OR?, highly biased if OR # 1

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny



Binomial proportions

2 X2 .
= iElites Matched pairs

Conditional likelihood to the rescue

e Using conditional likelihood, however, this problem is avoided

e Within each table, we can condition on ;1 + y;2, arriving at a
Bernoulli distribution if the pair is informative

e Since pairs are independent of each other, the total likelihood
is then

(o) = 32 4i(6)

e The result is that b has a binomial likelihood conditional on
a + b and the MLE is now consistent
e In this context, the score test is known as McNemar's test
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Binomial proportions

) :
- iElites Matched pairs

General 2 x 2 tables

e The same logic works for more general 2 x 2 tables

e Here, each table's conditional likelihood corresponds to the
hypergeometric distribution and the log-likelihood from these
tables are again additive

e Again, the score test is particularly convenient:

i@ — )
\/ 2o ‘712 ’

where y; and o7 are the mean and variance of the
hypergeometric distribution for table 4
e This is known as the Mantel-Haenzel test

Zz =
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Exponential families

Generality of conditional likelihood

e So, is conditional likelihood a general method, or only
available in specialized cases?

e To some extent, both

e On the one hand, it is always possible to derive a conditional
likelihood for exponential families; however, the resulting
likelihood may be rather complicated
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Exponential families

Exponential family: Setup

o Letting v = s1(z) and w = sa(x) denote the sufficient
statistics of the exponential family,

p(v,w) =exp{0'v+n"w —(0,n)}fo(z)

e To derive the conditional likelihood, we first need to derive
the marginal distribution of w

e We can obtain this by summing (or integrating) p(v, w) over
the set {z : sao(x) = w}
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Exponential families

Exponential family: Conditional likelihood

The conditional likelihood then arises from

p(viw) = p(v, w)/p(w)
 Yasi(@)=visa(a)=w XP{OTV +0TW —(0,m)} fo(z)
C Yiss(a)=w XP{0 s1(2) + "W — (0,1)} fo(z)
 Yasi(@)=visa(x)=w XP{0 "V} fo(2)
C Yrsa(e)=w &P{0 1 (2)} fo(x)

e The likelihood is free of
e Sums would be replaced by integrals if x was continuous
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Exponential families

Conditional logistic regression

e A common application of this idea is the logistic regression
setting
o Consider the model Y; ~ Bern(;) with
T

log =a+ Bz
1—71'1'

e The probability model is therefore

logp(y) = aZ yi + BZmiyi — Zlog(l + exp{a + fz;})
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Exponential families

Conditional logistic regression (cont'd)

o Letting v = > x;y; and w = > y;, this is an exponential
family, and we have the conditional likelihood

L(B) = M,
> uexp(fu)
where the sum in the denominator is over all values of
u = Y x;y; such that >y = w, where y;° represents
potential values that the random variable Y; could have taken
e Since the y; values are all 0 or 1, this corresponds to the
permutations of y
e Similar to what we've seen before, this is particularly
appealing when the data is matched or paired; this is probably
the most common use of conditional logistic regression
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Exponential families

RENMES

e The usual likelihood-based approaches to inference can now
be applied, although we face a computational challenge in
terms of evaluating Y exp(fSz;y;) over all possible
permutations of y

e Nevertheless, fast algorithms have been developed to tackle
this problem and the method (known as conditional logistic
regression) is widely implemented in statistical software

e We focused on the simple regression case here, but the idea
can be extended to multivariate settings as well

e Futhermore, exact approaches to inference are possible using
permutation tests (as in our earlier examples)
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