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Introduction

• Today we’re going to discuss an alternative approach to
likelihood-based inference called conditional likelihood

• The main idea is that while the data may depend on both our
parameters of interest θ and nuisance parameters η, perhaps
we can transform the data in such a way that we can factor
the likelihood into a conditional distribution depending only
on θ
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Conditional likelihood: Definition

• Specifically, suppose we can transform the data x into v and
w such that

p(x|θ,η) = p(v|w,θ)p(w|θ,η)

• The first term, L(θ) = p(v|w,θ), is known as the conditional
likelihood; note that this term is free of nuisance parameters

• Note that, unlike the profile likelihood, the conditional
likelihood is an actual likelihood, in the sense that it
corresponds to an actual distribution of observed data
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Sufficiency

• Recall that w is sufficient for η if the conditional distribution
of x |w does not depend on η — in other words, we can
always construct a conditional likelihood if there is a sufficient
statistic for the nuisance parameters

• Note that in order to calculate the conditional likelihood, we
need to derive the marginal distribution of w:

ℓ(θ,η) = ℓc(θ) + ℓm(θ,η)
=⇒ ℓc(θ) = ℓ(θ,η) − ℓm(θ,η),

where ℓc is the conditional log-likelihood and ℓm is the
likelihood based on the marginal distribution of w
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Information loss

• Note that θ also appears in the marginal likelihood ℓm(θ,η)
• By focusing solely on the conditional likelihood ℓc(θ), we are

potentially throwing away information about θ
• Note that the concern here is efficiency, not validity

◦ The conditional likelihood is a true likelihood, so all of our
likelihood results hold

◦ However, the conditional information might carry less
information (larger variance) about θ than the full or profile
likelihood

• We’ll go through two examples — one where this is not a
problem and one where it is
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Poisson model

• Suppose we have two independent Poisson random variables:

X ∼ Pois(λ)
Y ∼ Pois(µ)

and suppose that we are interested in the relative risk θ = µ/λ
• One way of approaching this problem would be to derive the

full likelihood L(λ, µ), then use likelihood theory and the delta
method to derive the distribution of θ:

θ̂ − θ

SE
d−→ N(0, 1),

where SE2 = (µ2 + µλ)/λ3, as µ, λ → ∞
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Conditional likelihood

• However, suppose we instead let t = x+ y and then
proceeded along these lines:

p(x, y|λ, µ) = p(y, t|λ, µ)
= p(y|t, λ, µ)p(t|λ, µ)

• The second term, we will just ignore; the first term is the
conditional likelihood

• Writing the conditional likelihood in terms of θ, we have

Lc(θ) =
( 1

1 + θ

)x (
θ

1 + θ

)y

;

note that this likelihood is free of nuisance parameters
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Orthogonal parameters

• Are we losing information about θ?
• In this particular case, we are losing nothing: letting
η = λ+ µ, we can write

L(θ, η) = Lc(θ)Lm(η)

• In other words, θ does not show up in the part of the
likelihood that we are ignoring

• When such a factorization exists, the parameters θ and η are
said to be orthogonal parameters
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Estimation and inference

• Now we can just carry out all the usual likelihood operations
on the conditional likelihood

• The score is

u(θ) = y/θ − t/(1 + θ),

so θ̂ = y/x, which seems like the obvious estimator
• The information, in this case, yields the same approximate

variance as the delta method

I(θ) = y

θ2 − t

(1 + θ)2 ,
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Exact inference

• In the Poisson case, however, we don’t really need asymptotic
approximations, as we can carry out exact inference based on
the conditional relationship

Y |T ∼ Binom
(
T, θ

1+θ

)
• Exact tests and confidence intervals for the binomial

proportion could then be constructed and transformed to give
confidence intervals for θ

• This is often true, generally speaking, for conditional
likelihood approaches: non-asymptotic methods are often
available, albeit not always so easily calculated
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Profile likelihood

• Yet another way of approaching this problem is to derive the
profile likelihood of θ

• In this case, we end up with the same likelihood as the
conditional approach:

L(θ) =
( 1

1 + θ

)x (
θ

1 + θ

)y

• This is only true in the case of orthogonal parameters,
however (i.e., only if the nuisance parameters can be factored
out does the profile likelihood automatically produce a
conditional likelihood)
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Repeated regression

• For our second example, consider the case of simple linear
regression with repeated entries

• In other words, yi1, yi2
⊥⊥∼ N(x⊤

i β, σ2) for i = 1, . . . , n:
ordinary regression but we observe two independent outcomes
for each covariate pattern

• The conditional distribution of {yi1, yi2} given the sum
yi1 + yi2 depends only on σ2, so one potential approach would
be to maximize this conditional likelihood
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Efficiency

• In this scenario, the MLE of the conditional likelihood is

σ̂2
c = 1

2n

n∑
i=1

(yi1 − yi2)2

• However, the distribution of the sums yi1 + yi2 also has quite
a bit of information about σ2, and ignoring it results in a
worse estimator:

Likelihood Bias Variance MSE

Profile -0.24 1.20 1.25
Conditional 0.03 2.52 2.52
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Neyman-Scott problem

• However, a very different phenomenon happens when the
regression coefficients differ for each pair

• Consider the Neyman-Scott problem where

yi1, yi2
⊥⊥∼ N(µi, σ

2)

• In this scenario, the bias of the ordinary/profile MLE is a big
problem and doesn’t go away as n increases (recall from a
previous HW assignment that the MLE is not consistent)

• The MLE of the conditional likelihood, on the other hand, is
not only consistent but unbiased
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Illustration
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Remarks

• As the figure indicates, we are certainly losing information
(compared to the oracle) by not knowing the µi parameters;
indeed, the information loss is 50%

• The profile likelihood is narrower, but:
◦ It’s centered on the wrong point entirely
◦ The regularity conditions don’t hold, so none of our inferential

results hold
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When conditional likelihood is appealing

In general, conditional likelihood is appealing when:
• The full / profile likelihood is inconsistent / biased / unstable
• The conditional likelihood is simpler than the original model
• Not much information is lost by ignoring part of the likelihood

◦ Often, this is difficult to calculate and “how much information
is lost” is more of an intuitive / informal argument

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 17 / 31



Introduction
2 × 2 tables

Exponential families

Definition
Example: Poisson relative risk
Example: Repeated regression

Regression

• For example, the most widespread use of conditional
likelihood is probably in regression analysis

• It is often the case that both the predictor X and the
outcome y are random variables

• We could specify the joint distribution of X and y, but there
would be many parameters involved in defining the distribution
of X and these parameters are not of interest in regression

• By considering instead the conditional distribution (conditional
likelihood) of y|X, these nuisance parameters are eliminated

• Some information is lost, but (a) not much and (b) we would
need a lot of assumptions to access it
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Binomial proportions

• Another very common application of conditional likelihood is
for comparing two binomial proportions: X ∼ Binom(n1, π1)
and Y ∼ Binom(n2, π2), with X ⊥⊥ Y , and our interest is in
the odds ratio θ

• By conditioning on the total T = X + Y , we arrive at a
conditional distribution for X|T containing only the odds ratio
that we can use as our conditional likelihood:

p(x|t) =
(n1

x

)( n2
t−x

)
θx∑t

s=0
(n1

s

)( n2
t−s

)
θs
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Connection with hypergeometric distribution

• At θ = 1 the conditional distribution is the hypergeometric
distribution

• Thus, we could carry out non-asymptotic inference on the
basis of this distribution; this is known as Fisher’s exact test

• We could also use any of our asymptotic likelihood approaches
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Score test

• The score test is particularly convenient to apply, since the
likelihood is simplified considerably at the null hypothesis
θ = 1

• Letting µ and σ denote the mean and standard deviation of
the (n1, n2, t) hypergeometric distribution, the score test
statistic is

z = x− µ

σ

• Confidence intervals would involve the use of noncentral
hypergeometric distributions
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Matched pairs, binary outcome

• On a related note, let’s consider the question of matched pairs
of subjects with a binary outcome (the discrete version of the
Neyman-Scott problem)

• Suppose we have n pairs of observations with Yi1 and Yi2
representing independent binary outcomes, and our probability
model is

logit(πi1) = αi

logit(πi2) = αi + β;

this would arise, for example, in a study of identical twins
where one was exposed to a risk factor and the other was not
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Profile likelihood bias

• Our interest is the odds ratio eβ, but as in the Neyman-Scott
problem, the number of nuisance parameters is growing with n

• This causes problems with the profile likelihood: letting a
denote with number of {Yi1 = 1, Yi2 = 0} pairs and b denote
with number of {Yi1 = 0, Yi2 = 1} pairs,

α̂i(β) = −β/2
β̂ = 2 log b

a

ÔR =
(

b
a

)2

• The estimator (b/a) is known to be consistent, so the MLE
here converges to OR2, highly biased if OR ̸= 1
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Conditional likelihood to the rescue

• Using conditional likelihood, however, this problem is avoided
• Within each table, we can condition on yi1 + yi2, arriving at a

Bernoulli distribution if the pair is informative
• Since pairs are independent of each other, the total likelihood

is then

ℓ(θ) =
∑

i

ℓi(θ)

• The result is that b has a binomial likelihood conditional on
a+ b and the MLE is now consistent

• In this context, the score test is known as McNemar’s test
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General 2 × 2 tables

• The same logic works for more general 2 × 2 tables
• Here, each table’s conditional likelihood corresponds to the

hypergeometric distribution and the log-likelihood from these
tables are again additive

• Again, the score test is particularly convenient:

z =
∑

i(xi − µi)√∑
i σ

2
i

,

where µi and σ2
i are the mean and variance of the

hypergeometric distribution for table i
• This is known as the Mantel-Haenzel test
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• So, is conditional likelihood a general method, or only
available in specialized cases?

• To some extent, both
• On the one hand, it is always possible to derive a conditional

likelihood for exponential families; however, the resulting
likelihood may be rather complicated
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• Letting v = s1(x) and w = s2(x) denote the sufficient
statistics of the exponential family,

p(v,w) = exp{θ⊤v + η⊤w − ψ(θ,η)}f0(x)

• To derive the conditional likelihood, we first need to derive
the marginal distribution of w

• We can obtain this by summing (or integrating) p(v,w) over
the set {x : s2(x) = w}
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The conditional likelihood then arises from

p(v|w) = p(v,w)/p(w)

=
∑

x:s1(x)=v,s2(x)=w exp{θ⊤v + η⊤w − ψ(θ,η)}f0(x)∑
x:s2(x)=w exp{θ⊤s1(x) + η⊤w − ψ(θ,η)}f0(x)

=
∑

x:s1(x)=v,s2(x)=w exp{θ⊤v}f0(x)∑
x:s2(x)=w exp{θ⊤s1(x)}f0(x)

• The likelihood is free of η
• Sums would be replaced by integrals if x was continuous
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• A common application of this idea is the logistic regression
setting

• Consider the model Yi ∼ Bern(πi) with

log πi

1 − πi
= α+ βxi

• The probability model is therefore

log p(y) = α
∑

i

yi + β
∑

i

xiyi −
∑

i

log(1 + exp{α+ βxi})
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• Letting v =
∑
xiyi and w =

∑
yi, this is an exponential

family, and we have the conditional likelihood

L(β) = exp(βv)∑
u exp(βu) ,

where the sum in the denominator is over all values of
u =

∑
xiy

∗
i such that

∑
y∗

i = w, where y∗
i represents

potential values that the random variable Yi could have taken
• Since the y∗

i values are all 0 or 1, this corresponds to the
permutations of y

• Similar to what we’ve seen before, this is particularly
appealing when the data is matched or paired; this is probably
the most common use of conditional logistic regression
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• The usual likelihood-based approaches to inference can now
be applied, although we face a computational challenge in
terms of evaluating

∑
exp(βxiyi) over all possible

permutations of y
• Nevertheless, fast algorithms have been developed to tackle

this problem and the method (known as conditional logistic
regression) is widely implemented in statistical software

• We focused on the simple regression case here, but the idea
can be extended to multivariate settings as well

• Futhermore, exact approaches to inference are possible using
permutation tests (as in our earlier examples)
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