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Introduction

Introduction

e Today is the final lecture of “part 2" of this course, and we
will use it to go through an extended example involving
Poisson regression

e This example will be a good case study of the likelihood tools

we've developed so far, in particular:
o We will see how these ideas work in a regression setting
o We will go into detail regarding the implementation,
algorithms, and computational issues surrounding the fitting of
these models
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Introduction

Our case study: The British Doctors’ Study

o We're actually going to analyze real data today!

e Our motivating example will be the landmark British Doctors’
Study, the first large prospective cohort study to examine the
health consequences of smoking

e In 1951, British doctors were sent a brief questionnaire about
whether they smoked tobacco; since then, information about
their deaths has been collected

e Qur analysis today will focus on estimating the effect of
smoking on death, while adjusting for age and duration of
follow-up
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Introduction

Cohort studies and follow-up time

o Certainly, if we follow one group (smokers / nonsmokers)
longer, we are likely to observe more deaths in that group

e Assuming deaths are independent between subjects, this can
be quantified using total person-years of follow-up for a group
(duration of follow-up for each person added up over all
subjects in the group)

e Letting t; denote the person-years of follow-up in group i,
because the sum of independent Poisson random variables
also follows a Poisson distribution, the number of deaths Y; in
group ¢ can be modeled as

Y; ~ Pois(j;) i = i,

where )\; is the rate of interest (in our case, it will be death
rate per 1,000 person-years)

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 4 /32



Introduction

Poisson likelihood

e The Poisson probability function is p(y|u) = pYe™*/y!, so the
contribution to the log-likelihood coming from the ith
observation (in our case, the ith group, as individual
observations have been pooled together into groups) is

i = yilog pi — pui

e Recall that this is in the exponential family, with natural
parameter 7; = log p;

e In GLM terminology, this is known as the “random
component” of the model
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Introduction

Link function

e What remains is to connect u; to the covariates; this is known
as the “systematic component” of the model

e For a variety of reasons, both theoretical and practical, it
makes sense for our model to operate on the scale of the
natural parameter 7; rather than p; directly

e In our case, the assumption log \; = x;/ 8 means that

log p1; = n; = logt; + x; B3;

the logt; term is known as the offset of the model
e Note that the offset is not an intercept — there is no
coefficient associated with logt;
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Introduction

Link function (cont'd)

e In previous lectures and homework assignments, we've seen
many advantages of working with natural parameters
(minimal sufficiency, CRLB, observed information = expected
information)

e In the Poisson case, we also have the practical advantage that
x,; B can be any real number, but y; is restricted to be
positive

e If we were to fit the model \; = x; 3, we run the risk of
predicting negative mean counts; not only is this nonsensical,
it may cause problems with code and the algorithms we're
using

e In GLM terminology, modeling the natural parameter is known
as the “canonical link”
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Model fitting mentation

e Let's begin by determining the score and information of this
model

e Taking the gradient of the log-likelihood with respect to 3, we
have

u(B) =X"(y —p)

e Solving for the root of this likelihood equation, however, is not
something we are going to be able to accomplish analytically,
as p is a nonlinear function of B: u; = exp(x; B)
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Score and information
Model fitting Algorithm and implementation

er

Information

e To proceed, we can take a Taylor series expansion of the score
to obtain a linear approximation which can be solved in closed
form

e To do so, we require the information, so let's derive that now:

T, = X WX,

where W is a diagonal matrix with elements e

e The element w; = € is often called the weight of observation
i, for reasons that you will explore in the next homework
assignment
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Model fitting A mentation

Newton's method

e We can now proceed to find B by repeatedly solving the
approximate score equations, then re-approximating,
re-solving, and so on

e Each iteration of this process looks like this:

~(m+1

BT =B+ (XTWOIX) X (y - ),

e This algorithm is known as Newton's method, or the
Newton-Raphson algorithm
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re and information
Model fitting plementation

Fisher scoring

Specifically, Newton's method refers to updating the

parameters according to ,3 D) ,B(m) +Z,'u
A related method, known as Fisher scoring, uses the expected

information instead: ﬁ(mﬂ = B(m) + 1

Both approaches are valid and usually perform similarly

In our case, of course, the two approaches are the same, but if
we had used a non-canonical link function this would not be
the case
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Score and information
Model fitting Algorithm and implementation

Cony es

Implementing these ideas

e Let's now implement these derivations with code

o As with other lectures, this code is available online, but unlike
other lectures, we're going to discuss coding details in lecture
as well

e Furthermore, I'm going to do this in an iterative manner, with
an initial, bare-bones version of the algorithm that we then
improve upon

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny



formation
Model fitting i mentation

Initial version

# MLE: Simple
beta <- rep(0, ncol(X))
for (i in 1:30) {
eta <- drop(log(Time) + X %*% beta)
mu <- exp(eta)
W <- diag(mu)
Info <- crossprod(X, W) %*% X
beta <- beta + solve(Info) %*% crossprod(X, y-mu)
+

Let's compare with the output of fit <- glm(...):
# beta

# -1.0116 1.4840 2.6275 3.3505 3.7001 0.3545
# coef (fit):

# -1.0116 1.4840 2.6275 3.3505 3.7001 0.3545
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Score and information
Model fitting Algorithm and implementation

Converge es

Areas we could improve

Our algorithm works, although could be improved in several ways:
e Monitor convergence instead of assuming 30 iterations is
appropriate
e Use a smarter choice of initial value
e Put our code into a function to make it more reproducible and
easier to use
e Take steps to ensure robust convergence
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S | information
Model fitting implementation

Monitoring convergence

Adding a simple convergence monitor:

# Improvement 1: Monitor convergence
converged <- function(old, new, eps=le-6) {
all(abs(old-new) < eps)}
beta <- rep(0, ncol(X)); iter <- 0
repeat {
old <- beta
iter <- iter + 1
eta <- drop(log(Time) + X %x% beta)
mu <- exp(eta)
W <- diag(mu)
Info <- crossprod(X, W) %*% X
beta <- o0ld + solve(Info) %*% crossprod(X, y-mu)
if (converged(old, beta) | iter > 50) break
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Score and information
Model fitting Algorithm and |mp|ementat|on

Cony

Comments

e The code on the previous slide required 22 iterations to reach
convergence

e It is always a good idea to have a maximum number of
iterations (here, we chose 50) so that your program doesn't
run forever in case something goes wrong

e Here, we based our assessment of convergence on the
maximum absolute difference in coefficients,

+1
||,3 (mtl) _ (m)||oo, which is simple and reasonable, although
there are a variety of other options
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Model fitting

Relative vs. absolute convergence

e The main drawback of monitoring absolute convergence is
that it is not invariant to scale

® In other words, whether a model has converged or not
depends on whether we measure distance in feet or inches;
this is a bit absurd

e To avoid this, relative criteria are sometimes used instead:

S(m+1 S(m
B B
13|
° OneAdrawback of a relative criterion is that it can be unstable
for 5 = 0, so a hybrid approach can also be applied:

B B

1B + ¢
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Score and information
Model fitting Algorithm and implementation

Cony es

scale?

e Alternatively, convergence can be monitored on the scale of
the linear predictors, which are invariant to changes of scale
among the features

e Finally, we could also choose to assess convergence by looking
at changes in the likelihood (this is what glm() does)

e These last two approaches also avoid issues due to lack of
convergence due to multicollinearity, although whether this is
desirable or not depends on the situation

e In general, all of these approaches are reasonable, but none of
them is perfect
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5 and information
Model fitting implementation

Initial value

e One of the reasons that our algorithm requires 22 iterations is
that it starts at =10

e Since the MLE of the intercept-only model is trivial to
calculate, we could at least start there:

> Yi
it

Bo = log

e In code:
betal[1] <- log(sum(y) / sum(Time))

e Now our algorithm requires just 8 iterations
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d information
Model fitting i mentation

Function

e Qur block of code is starting to be useful, so we should
definitely turn it into a function rather than copy and paste it
every time we want to use it

e Copying and pasting blocks of code is the number one source
of errors, so the moment you find yourself doing it,
immediately stop and turn it into a function

e Our function looks like this (see R code for full definition):

pois_fit <- function(X, y, Time, eps=1le-6) {
list(
loglik=loglik, beta=drop(beta), iter=iter,
r=y-exp(eta), eta=eta, Info=Info)
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d information
Model fitting ithm and implementation
Convergence issues

Is convergence guaranteed?

e Finally, let's take a moment to discuss the possibility of
non-convergence

e Is Newton's method guaranteed to converge?

e No

e Why not? And is it possible to fix Newton's method so that it
does converge?

e First, let's take a look at a (1-d) animation that will help us
understand how Newton's method works
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Model fitting
Convergence issues

Newton's method: animation

200 —

150 —

100 —
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and information
Model fitting thm and implementation
onvergence issues

Convergence theory

e This isn't a course on numerical analysis, so we're not going
to go into the full details of convergence theory, but let's give
a rough picture of the requirements for Newton's method to
converge

e These requirements turn out to be rather similar to the
requirements for the MLE to be consistent, in particular that
the information matrix is positive definite (in 1d, this would
mean that the score is monotone decreasing)

o If this is true locally, we can only hope to say that we
converge to a given solution if our initial value is reasonably
close to the solution

e If the information is p.d. everywhere (i.e., the likelihood is
log-concave), then likelihood equations have (at most) one
solution, and Newton's method will probably find it
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d information
Model fitting ithm and implementation
Convergence issues

Monotone likelihood

e Why “probably”? What can go wrong? Two things

e First of all, there may not be any solutions to the score
equations

e This happens when the likelihood is a monotone function of 6,
so 6™ would increase without bound

e This happens a lot in logistic regression, for example: the
MLE of the probability could be 1, which corresponds to
B = 00 on the log-odds scale
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and information
Model fitting thm and implementation
onvergence issues

Unstable updates

e The other thing that could go wrong is that the Newton step
could overshoot the solution

e Sometimes this is fine, but it could also spiral out of control,
increasingly overshooting the solution in opposite directions
with each iteration

e This situation, however, is fixable

e The problem is that the Newton step is too large, so we can
simply take smaller steps
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d information
Model fitting ithm and implementation
onvergence issues

Damped updates

e In particular, we could modify our iterative procedure:

~(m+1

3 ) _ B(m) L aT la
e The “pure” Newton's method uses o = 1, but the “damped”
or “guarded” Newton's method uses some o < 1
e This can be implemented in two ways:
o A 1-d line search over « to find the best «
o Setting o = 1/2 if the update would decrease the
log-likelihood (then o = 1/4 if it still decreases the
log-likelihood, and so on); this is known as step-halving

o With either of these modifications, Newton's method is
guaranteed to converge to the MLE (if it exists) of a
log-concave likelihood
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Inference

e | won't spent a great deal of time on inference, as the story
here will be similar to what we just saw with the gamma
distribution

e Starting with the Wald approach (these are the same as what
you get from summary(fit) with glm():

# Wald tests
z <- res$beta / sqrt(diag(solve(res$Info)))
p <- 2*pnorm(-abs(z))

e And confidence intervals are easily obtained:

# Wald intervals

SE <- sqrt(diag(solve(res$Info)))
lwr <- res$beta + gqnorm(0.025) * SE
upr <- res$beta + qnorm(0.975) * SE
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Inference

LR test

e For the likelihood ratio test:

# LRT

X0 <- model.matrix( ~ Age, britdoc)

X1 <- model.matrix( ~ Age + Smoking, britdoc)
110 <- pois_fit(X0, y, Time)$loglik

111 <- pois_fit(X1, y, Time)$loglik

x <= 2%(111-110)

pchisq(x, 1, lower.tail=FALSE)

e Note that these results are the same as what you get from

null <- glm(Deaths ~ offset(log(PersonYears/1000))
+ Age, britdoc, family=poisson)
anova(null, fit, test='Chisq')
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Inference

Profiling

e Confidence intervals are not as easily obtained, as we need to
solve for the restricted MLE

e However, it's not actually as bad as you might think, as we
can abuse our offset to find this restricted MLE without
writing much new code

e |n particular,

ni = logti + xif; +x; _;B_;

e Since our code earlier passed Time as opposed to the offset
directly, we'll be fitting the restricted MLEs via:
where here X is equal to X_; in the formula
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Inference

LR confidence interval

So, for example, we might implement LR intervals like this:

# LR confidence interval
lr_chisq <- function(b, X, x, y, Time, 111) {
out <- double(length(b))
for (j in length(b)) {
res <- pois_fit(X, y, exp(log(Time) + xxb[j]))
out[j] <- 2*(11l1l-res$loglik)
+
out
}
f <- function(b) qchisq(0.95, 1) -
lr_chisq(b, X[,1:5], X[,6], y, Time, 111)
lwr <- uniroot(f, interval=c(-5, res$betal6]))$root

Note that this is the same as the output of confint(fit)
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Inference

e Finally, the score test:

# Score test

x <- X[, 6]

X0 <= X[, -6]

res0 <- pois_fit(X0, y, Time)

W <- diag(exp(resO$eta))

v <- solve(crossprod(X, W) %x*% X)[6,6]

z <- drop(crossprod(x, res0$r)) * sqrt(v)
2*pnorm(-abs(z))

e Note that v could also be calculated as

v <= 1/(crossprod(x, W) %*) x -
crossprod(x, W) %*% X0 %*%
solve(res0$Info) Y%*%
crossprod (X0, W) %*% x)
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Inference

Results

e In this example, the log-likelihood is well-approximated by a
quadratic and all three approaches give very similar results

e The results for the effect of smoking on mortality rate per
1,000 person-years, given as rate ratios (¢”):

95% interval

Lower Upper P

Wald 1.1550 1.7594 0.00096
LR 1.1609 1.7692 0.00057
Score 1.1554 1.7587 0.00090
e As a historical note, this was the first major cohort study to
demonstrate the health risks of smoking
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