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Information inequality One dimension

Multiple dimensions

Introduction

e Today we will prove the information inequality, which
establishes a lower bound on the variability of an estimator

e This leads to the idea of an “efficient” estimator, as any
estimator that achieves this bound can be considered optimal

e We will then see that the MLE is asymptotically efficient, as
are Bayesian estimators, and discuss Bayesian asymptotics a
bit
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Information inequality One dimension

Multiple dimensions

Information inequality: 1D

e First, let's take a look at the information inequality in the
case of a scalar estimator

e Theorem (Information inequality): Let 4 be a statistic with
finite expectation g(f) = E4. Suppose
X1, Xo,..., X, ~ p(:|0*) and d/df can be passed under the
integral sign with respect to both [dP and [4dP. Finally,
suppose %, (0*) > 0. Then

V4 >
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Information inequality One dimension

Multiple dimensions

RENMES

e Keep in mind here that p refers to the joint distribution of
X1, Xs,..., Xyn; we are not assuming iid here but we are
assuming that the derivative can be passed inside the integral
with respect to this joint distribution

e Furthermore, note that this is not an asymptotic theorem — it
is an inequality that is true for all values of n (including
n=1)
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Information inequality One dimension

Multiple dimensions

Attainment

e Is it possible for estimators to achieve this bound? (i.e., to
have the minimum possible variance?)

e An interesting theorem due to Wijsman (1973) is that equality
is only possible in the information inequality if 4 is linearly
related to the score

e In other words, the only situation in which the lower bound is
attainable (for all 6, for all n) is when # is the sufficient
statistic of an exponential family
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Information inequality One dimension

Multiple dimensions

Cramér-Rao lower bound

e The information inequality is often restated in terms of the
bias of an estimator 6 of 6

o Letting b(0) = g(0) — 0 denote the bias of §, and assuming we
have an iid sample, then the information inequality becomes

5o (L+0(67))?
e ey

or, in the case of an unbiased estimator,

1

) >
Vo= ns (6*)

e In this form, the inequality is known as the Cramér-Rao lower
bound
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Information inequality One dimension

Multiple dimensions

RENMES

e Recall that the mean squared error of an estimator is

MSE = E{(d — 6*)?}
= Bias® + Var

e Thus, among unbiased estimators, the CRLB represents the
minimum possible MSE

e However, this requirement is rather artificial: it is often the
case that biased estimators can be constructed with a lower
MSE than the best unbiased estimator
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Information inequality One dimension

Multiple dimensions

Example #1

The CRLB is not always attainable

For example, if X; N(u,0?), the CRLB for o2 is 20*/n

It turns out that this bound is unobtainable if i is unknown;
all unbiased estimators have a higher variance than this

For example, letting s represent the usual unbiased estimator
of the variance,

204 20
Vs? = ? >L
n—1 n
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Information inequality One dimension

Multiple dimensions

Example #2

o Keep in mind also that the CRLB only applies when we can
pass the derivative under the integral

e One common model for which this cannot be done is
X, S Unif(0, 0)

e In this case, one might think that the CRLB is 6% /n
* However, 6 = (n+1)X(,)/n is an unbiased estimate of ¢ with
2 2
Vo = " < i
nn+2) n

The “real” CRLB here is not well defined
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Information inequality: Multiparameter

o Now, let's prove the information inequality for the case of a
vector of parameters

¢ Theorem (Information inequality): Suppose
X1, Xo, ..., X, ~ p(x]0*), with F(8*) positive definite. Let
4 be an estimator with finite expected value g(@). If
Vop(x|0*) exists and can be passed under the integral sign
with respect to [ dP and [ 4dP, then

V4 = Vg(6") £ (67) 1 Vg(6")

e Recall that A > B means A — B is positive semidefinite
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Special case: g(6) =0

e In the special case where we have iid data and an unbiased
estimator 8 of 8, we have the simple result that:

O %J(G*)‘l,

the Cramér-Rao lower bound in d dimensions

o A related case: suppose we are estimating only a subset of 8,
say, 81, with remaining parameters so-called “nuisance
parameters”

e What is the impact on the CRLB?
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Information inequalit - : :
q Y One dimension

Multiple dimensions

Nuisance parameters

e A common notation convention when dealing with partitions
of the information matrix is to let #1; denote the (1, 1) block
of the information matrix, and #!! denote the (1,1) block of
F 1 (and so on for other partitions, and for the observed
information)

e Using this notation, the CRLB for estimating 6y is F'!/n, as
opposed to the CRLB for estimating 87 in the case where 02
is known: F;'/n

e Personally, | don't like this notation and prefer 7 to denote
F~1and V to denote Z~!, mainly because #!! tends to
cause some confusion as looking like an information, when it
is very much not an information of any kind
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Information loss due to nuisance parameters

o Recall that the relationship between these two quantities is
given by the Schur complement, which we restate here in
terms of our new information matrix notation (for the sake of
compactness, I'm suppressing the dependence on 8 here):

Vi1 = Fu — FoFsy S,
or, if you prefer the superscript notation,
(FN = Fy — FaFpy Fo;

recall that #y," is positive definite, so the term being
subtracted cannot be negative (F11 = ‘71;1)

e In other words, J12J2_21J21 is the cost of not knowing 602
when estimating 6, (i.e., the information we've lost)
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Orthogonality

e Only if 12 = 0 do we suffer no information loss

e This can indeed happen; when it does, the parameters 81 and
6, are said to be orthogonal

o For example, consider the case where X; 'S N(p, 0?)

e Here, T is unbiased for u and achieves the CRLB regardless of
whether we know o% or not

e Such situations, however, are more the exception than the rule
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Efficiency

Efficiency

e The information inequality and CRLB are of somewhat limited
use in finite samples, since they are only achieved in special
cases

e Reaching the CRLB asymptotically, on the other hand, is a
different matter, and a much more attainable goal for a
hardworking little estimator

e Definition: Let X; g p(x]|0*). Suppose a sequence of
estimates @, for 0 satisfies \/n(6,, — 0) 4, N(0,3(0)). The
sequence is said to be asymptotically efficient if
3(0) = F71(0) for all 6.

o While “asymptotically efficient” is a more accurate term, it is
common to refer to such estimators as “efficient”
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Efficiency

Efficiency and maximum likelihood

e As we have already shown, the MLE is asymptotically efficient
(under certain regularity conditions)

e Thus, the MLE is in some sense optimal: at least
asymptotically, no sequence of unbiased estimators can
improve upon the MLE's accuracy

e For a long time in statistics, it was thought that no biased
estimators could do better either; this belief, however, was
upended by JL Hodges
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Efficienc
Efficiency Superefficiency
Relative efficienc

Superefficiency

Suppose X; N(0,1) so that \/n(f — 6) ~ N(0,1)
Consider the biased estimator

- {0 if 9] < n1/4

6=1{.
6 if|0] >n-1/4

Now, P{|d] < n='/4} — 1if = 0 and — 0 otherwise

Thus, \/n(f — ) i>N(0,v), wherev =1if8#0and v =0
if@ =0
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Efficiency

Superefficiency (cont'd)

e In other words, v improves upon the CRLB; a so-called
“superefficient” estimator

e It's a pretty neat counterexample, although not necessarily a
serious challenge to likelihood theory, as it can be shown (Le
Cam, 1952) that the set of superefficient points always has
Lebesgue measure zero

e This is sort of like saying that the MLE achieves the optimal
variance almost everywhere, but this would only be a
meaningful statement with a Bayesian prior, as otherwise
there is no probability distribution associated with 6
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Efficie
Efficiency Super ncy
Relative efficiency

Two Cauchy estimators

e To get a sense of why efficiency is a useful concept in terms of
understanding the performance of estimators, let's return to
our X; Cauchy(#) example from the previous lecture

o Consider two potential estimators, the sample median 6 and
the “one-step” estimator where we solve the likelihood
equations using a Taylor series approximation about

e Now, it can be shown that
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Effici
Efficiency Super ncy
Relative efficiency

Asymptotic relative efficiency

e Since 72/4 = 2.47 > 2, we can now appreciate the purpose of
the one-step estimator: while both estimates are consistent,
the one-step estimator is more efficient

o Definition: If \/n(f; — 6) % N(0,02) and
Vn(fy —6) 4, N(0,03), the asymptotic relative efficiency
(ARE) of the two estimators is 02 /o2

e For the Cauchy estimators, the ARE is 2.47/2 = 1.23

e In other words, the median estimator requires approximately
23% larger sample size than the one-step estimator: we need
n = 123 observations with the median estimator to obtain the
same amount of information that the one-step estimator has
with n = 100
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Efficie
Efficiency Super ncy
Relative efficiency

Asymptotic relative efficiency: Tests

e This idea can be extended to testing as well

e Since the power of any reasonable test tends to 1 as n — oo,
one typically considers Hy : 0 =60y vs Hy : 0 =6y + A/\/n

e In this case, if 51 — ®(Aa; — z(l_a)) and
B2 = ®(Aaz — z(1_q)), where j3; is the power of test 4, the
asymptotic relative efficiency of the two tests is (a1/as)?

o Generally, if two statistical procedures have the same limit as
n1 — 00 and ny — 0o, then the ARE is the limit of the ratio
ny/ne; the estimation and testing definitions we have given
are special cases
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Efficienc
Efficiency Superefficiency
Relative efficiency

Asymptotic relative efficiency: Tests (cont'd)

e For example, when X; ~ g N(A/y/n,0?), the one-sample t-test

satisfies

B — (I)(A/U 21— oz))

while the Wilcoxon signed rank test satisfies

,6’2—)@( \/i—z(l a))

e Thus, the ARE is /3 = 1.05; when the data follows the
normal distribution assumed by the t-test, the Wilcoxon test
requires just 5% more data in order to achieve the same power
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Effici
Efficiency Super ncy
Relative efficiency

Additional remarks

Likelihood theory

If the distribution is not normal, then there is no upper bound
on the ARE of these two tests — one can always construct a
distribution such that the Wilcoxon approach is that many
times more efficient than a t-test

This example illustrates a common use of efficiency: there is
often a desire to develop robust nonparametric or
semiparametric methods that make less restrictive
assumptions than a parametric likelihood model, and efficiency
provides something of a gold standard to compare against
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Bayesian asymptotics

A . Efficiency of Bayes estimators
Efficiency of Bayes estimators - =

Bayesian asymptotics

e We mentioned earlier that maximum likelihood estimation is
“optimal” in the sense of being asymptotically efficient, but
keep in mind that it is not a unique property — there may be
multiple efficient approaches

o For example, Bayesian methods are also asymptotically
efficient, as we are now going to see

e First, however, we'll consider the related (and arguably, more
important) question of the asymptotic normality of the
posterior distribution

e Note that we're now talking about convergence of a random
measure (a random element whose outcome is a probability
distribution) as opposed to a random variable, which
introduces some complications
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Bayesian asymptotics

A . Efficiency of Bayes estimators
Efficiency of Bayes estimators fciency « 2 S

A rough statement

e Laplace (1820) was the first to observe that the posterior
distribution is approximately Gaussian near its mode
e More specifically, the posterior density is approximately

normal, centered at the MLE, with variance given by the
inverse of the information:

O]x ~N(6,1.7(6")")
0)x ~ N(0,Z,(0)™")

e However, making this observation rigorous becomes thorny —

the target described above (a) depends on n, (b) is random
and (c) is just a point mass at 6" as n — o

Likelihood theory
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Bayesian asymptotics

o e A Efficiency of Bayes estimators
Efficiency of Bayes estimators rcency « 2 S

The Bernstein-von Mises theorem

e Instead, we will need to focus on the posterior distribution of
d = /n(0 — 0%) or equivalently, the posterior distribution of
0 evaluated at 6" +46//n

o The first formal proof of the asymptotic normality of the
posterior distribution came from Bernstein (1917) and von
Mises (1931), who showed that for any point §, we have

T (07 +8/v/n) = 6(9),

where ¢(-) is the N(0, £(0*)~1) density
e This result is known as the Bernstein-von Mises theorem
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Bayesian asymptotics

o e A Efficiency of Bayes estimators
Efficiency of Bayes estimators rcency « 2 S

Le Cam and the likelihood ratio

o This result, while historically groundbreaking, is slightly
unsatisfying — what we really want is

(0 + 8//n) 2 6(8),

e This statement is more complicated, because now we're
talking about a distribution evaluated at a random point. ..
it's not clear what the above statement even means

e To get around this, Le Cam (1953) employed the clever trick
of considering the posterior ratio m, (8 4 8//n|x) /m,(0|x),
showing that it converged to the kernel of a N(0, #(6*)~1)
distribution
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Bayesian asymptotics

A . Efficiency of Bayes estimators
Efficiency of Bayes estimators (I 2 s

Bernstein-von Mises theorem (pointwise)

Theorem (Bernstein-von Mises): Suppose the prior 7(0) is
continuous with m(8) > 0 for all @ € ©. Under regularity
conditions (A)-(D),

(0 +(c;|/@x> = exp{—36" F(6")d}.
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Bayesian asymptotics

A . Efficiency of Bayes estimators
Efficiency of Bayes estimators CIENEY < YES -

Convergence in total variation

e The results we have discussed so far are pointwise — they
don't guarantee that if you integrate these densities, you'll get
the same probabilities (i.e., that credible sets behave correctly)

e Modern Bayesian asymptotics compares the entire posterior
distribution to that of its target, which requires a global
notion of distance between distributions

e A standard choice is total variation distance,

[1p(@) - a@)l dz.
which is more natural in Bayesian applications because it
controls the largest possible difference in probabilities assigned

to any event.
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Bayesian asymptotics

A . Efficiency of Bayes estimators
Efficiency of Bayes estimators Y 2 :

Bernstein-von Mises theorem (total variation)

Theorem (Bernstein-von Mises): Suppose the prior 7(0) is
continuous with 7(8) > 0 for all @ € ©. If regularity conditions
(A)-(D) hold, and if

/ (0 + 8/ /n|x) 5 =5 [ exp{—167F(6%)8} ds,
T (0]x)
then
/m 5lx) — #(8)] dd = 0,

where ¢(-) is the N(0, £ (0*)~!) density
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Bayesian asymptotics

Efficiency of Bayes estimators Efficiency of B

RENMES

e The final line of the theorem follows from a result known as
Scheffé’s useful convergence theorem: if x, 2 x, x, = 0,
and Ex,, — Ex < oo, then x,, — x with r = 1

o These results are still usually called the Bernstein-von Mises
theorem, even though they are substantially stronger than the
original BvM results

e The end result is a nice theoretical justification for a variety of
posterior approximation techniques (Laplace approximation,
variational inference)
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Ba asymptotics

A . Efl f B i
Efficiency of Bayes estimators CIIL7 G| 2270 CRUINEL LS

Asymptotic efficiency of the posterior mean

e As a corollary to the Bernstein-von Mises theorem, we can also
conclude that Bayes estimators are asymptotically efficient

e To do so, we need the result that if P, Y pand

JII6]| dP < oo, then
/(SdPn—>/5dP

e Applying this result to the Bernstein-von Mises theorem, we
have
Vn(0—0) o,

where 6 denotes the posterior mean
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asymptotics

Efficiency of Bayes estimators ey @i [EEEs Giimeies

RENMES

e |n other words, the posterior mean and the MLE are
asymptotically equivalent

e The result is fairly intuitive: unless the prior has ruled 68" out,
eventually we will have enough data that the likelihood
dominates the posterior and agrees with maximum likelihood

e Obviously, this does not imply that Bayesian and frequentist
methods are equivalent (introducing a prior to improve
performance at small sample sizes is a major advantage of
Bayesian approaches), but it is reassuring to know that given
enough data, both schools of thought will agree on an answer
if they are working with the same likelihood model
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