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An inconsistent MLE
Lo

Introduction

e Today we will begin to prove the important asymptotic
properties of maximum likelihood estimates

e We begin with consistency: 6 Ny (this is weak
consistency; MLEs are also strongly consistent under the same
conditions, but we'll only concern ourselves with proving the
weak case)

o Broadly speaking, we'll break this up into two cases: where
the likelihood is unimodal and where it may not be (the latter
case being considerably more complicated as there could be
many local maxima, only one of which being the actual MLE)
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An inconsistent MLE
Lo

An inconsistent MLE

e To get a sense of the problems that arise when the likelihood
can have multiple peaks, consider the following model®:

X5 IN,1) + 4N exp(-2/67);

in words, an equal mixture of a standard normal and a normal
distribution whose variance goes to zero (fast!) as the mean
goes to zero

o Let's generate some samples from this model with 6 = 2 and
take at a look at its likelihood and what happens to it as
n — o0

1This example comes from Radford Neal
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An inconsistent MLE: n
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An inconsistent MLE: n = 40

As n — 00, it is increasingly certain that a giant spike will occur
near zero: § — 0 #*2
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Unimodal functions

To rule out such situations, let's restrict attention to unimodal
likelihoods, starting with a definition of “unimodal”

In one dimension, a function f is unimodal if there exists a
point m such that f is monotonically increasing for x < m
and monotonically decreasing for z > m

Extending to multiple dimensions, a point m € R is a strict
local maximum of a function f : R — R if there exists a
neighborhood N, (m) such that f(m) > f(x) for all

x € N (m) with x # m
e A unimodal function has exactly one such point, and that

Likelihood theory

point is the global maximum
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Sufficient conditions for unimodality

e Proving that a function is unimodal is typically challenging
unless we can resort to derivatives

e For any function that is twice differentiable, a sufficient (but
not necessary) condition for unimodality is that its Hessian
matrix H(x) = V2f(x) is negative definite for all x

e In the likelihood context, this means that the information
matrix is positive definite for all 8
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Log concavity

e Furthermore, if its Hessian is negative definite at all points,
the function is concave

e In the likelihood context, then, if the information matrix is
positive definite for all @, then its log-likelihood is a concave
function

e Such probability models are said to be log-concave

e Many common parametric models, including everything in the
exponential family, are log-concave
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KL divergence

Kullback-Leibler divergence

e Next, we need something like a “norm"” that measures the
distance between two probability distributions

o Definition: For two distributions p and ¢ with common
support?, the Kullback-Leibler divergence (commonly
abbreviated KL divergence, also known as KL information) is
defined as

KL(pllq) = Eplogg = /log %dp(fﬁ);

e Essentially, the KL divergence is measuring the ability of the
likelihood ratio to distinguish between two distributions

2it is possible to extend KL to cases where supports differ, but it ceases to

be useful
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KL divergence

e The KL divergence is related to a

concept in physics and information For example, in the
theory called entropy, which is defined Bernoulli distribution:
as
0.7
H(p) = —Elogp(X) o]
—~ 04 4
e Entropy measures the degree of T o034
uncertainty in a distribution, with the 02
uniform and constant distributions 017
. 0.0 -
representing the extremes SR
00 02 04 06 08 1.0
e Note that

H(p) = —KL(p||u) + Const, where u
is a uniform distribution
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KL divergence

inequality

e Note that the KL divergence is not symmetric: it is measuring
the distance from distribution p to distribution ¢, not the
other way around3

e Furthermore, the KL divergence does not satisfy the triangle
inequality, so is not a norm; hence the term “divergence” as
opposed to “distance”

e However, it does satisfy positivity

¢ Theorem (Gibbs’ inequality): For any two distributions p
and ¢, KL(p||¢) > 0. Furthermore, KL(p||q) = 0 if and only if
p = q almost everywhere.

e This theorem is also known as the Shannon-Kolmogorov
information inequality

3 . L1 1 .
the symmetric version 5KL(p|lq) + 5KL(q|lp) is known as the
Jensen-Shannon divergence
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Consistency

e So, what does this have to do with consistency?
e By the WLLN, we have

—Z

= —KL(67]|6),

— log

which is less than 0 unless p(z|@) = p(z|0*) almost

everywhere
e In other words, P{L(0) < L(6*)} — 1 for all 8 # 6~
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KL divergence

|dentifiability

e More quantitatively, the likelihood ratio converges to zero
exponentially fast, with a rate given by the KL divergence

e Again, the only condition here is that we do not have
p(x]|@) = p(z|0*) almost everywhere; this is known as
identifiability and if it is violated, the models p(z|@) and
p(xz|@*) are said to be not identifiable

e For example, suppose x1; i N(p+ a,1) and
X9; id N(p + 3, 1); this is not identifiable because
{p, o, B} = {0,2,4} specifies the same distribution as
{p,a, f} = {3, —1,1} (along with infinitely many other
combinations)
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KL dlvergence

Consistency?

o Are we done? Have we established consistency?

e In one dimension, yes!

e Theorem: Let {p(z|6) : # € © C R} be a probability model
that is unlmodal (with respect to 9) and identifiable, and
suppose X; ~ p(x|0*) Then § -2 0.

e The argument also works if the parameter space © is finite
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KL divergence

Multiple dimensions

e Unfortunately, this argument breaks down even with d = 2:

6,

6
e To apply our earlier argument, we need to show that
P{L(6*) > L(8)} — 1 for the entire ring; use Gibbs’

inequality all we like, but it's no help — the ring contains an
infinite number of points
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Consistency: Assumptions

What assumptions do we need?

(A) ID: X1,..., X, are iid with density p(x|0%).

(B) Interior point: There exists an open set ®* C ® C R that
contains 6™.

(C) Smoothness: For all z, p(x|0) is continuously differentiable
with respect to 0 up to third order on @*, and satisfies the
following conditions:

(i) Derivatives up to second order exist and can be passed under
the integral sign in [ dP(z|0).

(i) The Fisher information #(0™) is positive definite.

(iii) The third derivatives are bounded: there exists M (z)
satisfying EM (X) < oo such that
supgce-|V30(0|2)jkm| < M(z) for all j,k,m.
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Consistency: Assumptions (cont'd)

e To avoid the possibility of multiple local maxima, I'll also add

the following assumption:
(D) Log-concavity: The Fisher information #(0) is positive

definite for all @ € ®, and © is a convex set

e Obviously, Assumption (D) implies much of assumption (C); |
give them as separate assumptions here since assumptions
(A)-(C) are standard, while assumption (D) is “extra”

o Next time, we will consider what happens when we remove it,
retaining only (A)-(C)
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Remarks: 11D

e Keep in mind that Condition (C) describes what happens for a
single observation, whereas Condition (A) describes how these
observations are related to each other (iid)

e We are covering the IID case because it is the obvious place
to start, but keep in mind that IID is not at all a necessary
condition: the theoretical properties we will prove apply to
many non-lID settings (likelihood would not be terribly useful
if it only worked in IID settings)

e However, additional conditions may be required in non-11D
cases, as we saw in the lecture on the Lindeberg-Feller CLT
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Remarks: C(i)

e This condition is necessary in order to ensure Eu(6*) = 0 and
Vu(0*) = E(Z); some authors assume this directly instead

e Whether we can pass derivatives under the integration sign is
governed by the DCT; in this case, it requires that

@) < @

for every x and for all @ € ®*, and that g(z) is integrable
(the condition for second derivative is similar)
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Remarks: C(ii)

e Conditions C(ii) and D relate to identifiability — if the
likelihood curves downward, then no two parameter values can
result in the same likelihood

® Note that C(ii) only ensures “local” identifiability

e Also note that C(ii) applies to the Fisher information, not the
observed information (the observed information may fail to be
positive definite with some probability)
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Remarks: C(iii)

e C(iii) may be mysterious at first since the third derivative is
not going to appear anywhere in our resulting theorems

e A restriction on the third derivative is needed to ensure that
the observed information converges uniformly to the Fisher

information: .
176) L #(6%)

as 62 0 (LLN only ensures pointwise convergence)
e Some authors prefer to explicitly assume uniform convergence
as opposed to saying anything about third derivatives
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Remarks: Continuity of information

e Finally, although not explicitly stated, these conditions also
ensures that both the observed information and Fisher
information are continuous functions of 8

o All differentiable functions are continuous; thus, by requiring
the third derivative to exist, we require that the second
derivative (the observed information) is continuous (by the
same reasoning, the score must be continuous)

e Also, if the third derivative is bounded, then the first and
second derivatives are bounded; this allows us to use the
dominated convergence theorem and

li 0) = #(6
953*]() F(0%)
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Consistency of the MLE

e OK, let's now prove the following important theorem

¢ Theorem (Consistency of the MLE): Suppose assumptions
(A)-(D) are met. Then the maximum likelihood estimator @ is
consistent:

o2 0.

e Connecting this to our earlier remarks on uniform convergence
towards the beginning of the course, note that pointwise
convergence of the likelihood ratio around the boundary of ®*
was not enough; we needed uniform convergence over the
entire boundary
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Alternative proof

o |t is possible to prove consistency of the MLE under
considerably weaker conditions than this; in particular,
without any requirements on differentiability

e This was the approach taken by Wald (1949), who used a
compactness argument

e Wald's approach is considerably more abstract and involves
some topology arguments about compact sets, so we aren’t
going to go into detail here

e Qur approach, using Taylor series, follows that of Cramér
(1946), and is more relevant to techniques we'll see going
forward
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Convergence in non-standard settings

e Because of this, however, it is possible for the MLE to be
consistent even in situations that do not meet our regularity
conditions

e For example:

o X; % Bern(6); 0 L 0% even if 0" =1 (on the boundary)

o X; N Laplace(0); 0 L 6 even though likelihood not
diffgzentiable at 0~ b

o X; ~ Unif(0,6); # — 6* even though likelihood isn’t even
continuous at 6* (let alone differentiable)
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