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Introduction

• In our previous lecture, we saw how likelihood-based inference
works for exponential families

• Starting today, we are going to adopt a more general outlook
on likelihood, and not make any specific assumptions about
its form

• As we remarked at the outset of the course, the likelihood
function is minimal sufficient

• This means that the entire function is the object that contains
the information necessary for objective inference
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Maximum likelihood estimation

• However, a number is of course much simpler and easier to
communicate and manipulate than an entire function, so it is
desirable to summarize and simplify the likelihood

• The single most important information about the likelihood is
surely the value at which it is maximized

• The maximum likelihood estimator, θ̂, of a parameter θ, given
observed data x, is

θ̂ = arg max
θ

L(θ|x).

• This was Fisher’s original motivation for the likelihood (in his
later years, however, he came to realize that likelihood was
more than merely a device for producing point estimates)
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Curvature

• A single number is not enough to represent a function
• However, if the likelihood function is approximately quadratic,

then two numbers are enough to represent it: the location of
its maximum and its curvature at the maximum

• Specifically, what I mean by this is that any quadratic
function can be written

f(x) = c(x − m)2 + Const,

where c is the curvature and m the location of its maximum;
the constant is irrelevant given our earlier remarks about how
only likelihood comparisons are only meaningful in the relative
sense
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Quadratic approximation: Illustration

The likelihood itself does not tend to be quadratic, but the
log-likelihood does; from our first lecture:
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Remarks

• Log is a monotone function, so the value of θ that maximizes
the log-likelihood also maximizes the likelihood

• Even good approximations break down for θ far from θ̂:
regularity is a local phenomenon

• As we will be referring to it often, we will use the symbol ℓ to
denote the log-likelihood: ℓ(θ) = log L(θ)

• The situation is similar in multiple dimensions; any quadratic
function can be written

f(x) = (x − m)⊤C(x − m) + Const;

we now require a d × 1 vector m to denote the location of the
maximum and a d × d matrix C to describe the curvature
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Regularity

• Likelihood functions that can be adequately represented by a
quadratic approximation are called regular1

• Conditions that ensure the validity of the approximation are
called regularity conditions

• We will discuss regularity conditions in detail later; for now,
we will just assume that the likelihood is regular

1When we say that the likelihood has a quadratic approximation, what we
really mean of course is that the log-likelihood has a quadratic approximation
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The score statistic
• The derivative of the log-likelihood is a critical quantity for

describing this quadratic approximation
• The quantity is so important that it is given its own name in

statistics, the score, and often denoted u:

u(θ) = ∇ℓ(θ|x)

• Note that
◦ u is a function of θ
◦ For any given θ, u(θ) is a random variable, as it depends on

the data x; usually suppressed in notation
◦ For independent observations, the score of the entire sample is

the sum of the scores for the individual observations:

u(θ) =
∑

i

ui(θ)

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 8 / 32



Maximum and curvature of likelihood
Properties of the score and information

A graphical introduction
Inference: Single parameter
Inference: Multiple parameters

Score equations

• If the likelihood is regular, we can find θ̂ by setting the
gradient equal to zero; the MLE is the solution to the
equation(s)

u(θ) = 0;

this system of equations is known as the score equation(s) or
sometimes the likelihood equation(s)

• For example, suppose we have Xi
iid∼ N(θ, σ2) with σ2 known

◦ Ui(θ) = (Xi − θ)/σ2

◦ U(θ) =
∑

i(Xi − θ)/σ2

◦ U(θ̂) = 0 =⇒ θ̂ = x̄
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Illustration (vertical line at θ∗)
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Information

• Meanwhile, the curvature is given by the second derivative
• This quantity is called the information,

In(θ) = −∇2ℓ(θ);

the negative sign arises because the curvature at the
maximum is negative

• The name “information” is an apt description: the larger the
curvature, the sharper (less flat) the peak, so the less
uncertainty we have about θ
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Information: Illustration

Random sample from the Poisson distribution:
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Information: Example

• As an analytic example, let’s return to the situation with
Xi

iid∼ N(θ, σ2) and σ2 known
◦ Ii(θ) = 1/σ2

◦ In(θ) = n/σ2

• Note that
◦ For independent samples, the total information is the sum of

the information obtained from each observation
◦ Noisier data =⇒ less information

• In general, the information depends on both X and θ (the
normal is a special case); we’ll return to this point later
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Information: Another example

• As another example, suppose there are 5 observations taken
from a N(θ, 1) distribution, but we observe only the maximum
x(5) = 3.5

• Here, it is not clear how we would find the MLE, score, and
information analytically, but we can use numerical procedures
to optimize and calculate derivatives

• In this case, the information is 2.4, implying that knowing the
maximum of 5 observations is worth 2.4 observations – better
than a single observation, but not as good as having all 5
observations
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Normal likelihood
• From an inferential standpoint, we can view this quadratic

approximation as a normal approximation, as a quadratic
log-likelihood corresponds to the Gaussian distribution

• As we mentioned in our first class, connecting likelihood to
probability is challenging in general; however, it is easy in the
case of the normal distribution

• For an iid sample from a N(θ, σ2) distribution (assuming σ2

known; we’ll consider the multiparameter case next), the
likelihood is

L(θ) ∝ exp
{

− 1
2σ2

∑
i

(xi − θ)2
}

∝ exp
{

− n

2σ2 (x̄ − θ)2
}
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Likelihood ratios

• The likelihood ratio, then, is simply

log L(θ)
L(θ̂)

= − n

2σ2 (x̄ − θ)2

• Furthermore, letting θ∗ denote the true value of θ, we know
that (x̄ − θ∗)/(σ/

√
n) ∼ N(0, 1), so

2 log L(θ̂)
L(θ∗) ∼ χ2

1

• In other words, if we want a 95% confidence interval, we
should set c = exp{−1

2χ2
1,(.95)} ≈ 0.15
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Binomial illustration (n=10, θ = 0.8)

0.5 0.6 0.7 0.8 0.9

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

θ

ℓ (
θ
)

Binomial (n=10, x=8)

Actual coverage (simulation): 88.3%

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 17 / 32



Maximum and curvature of likelihood
Properties of the score and information

A graphical introduction
Inference: Single parameter
Inference: Multiple parameters

Binomial illustration (n=100, θ = 0.8)
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Binomial illustration (n=1000, θ = 0.8)
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Multiparameter case

• Similarly, for the multivariate normal (assuming a nonsingular
variance),

log L(θ)
L(θ̂)

= −1
2(x̄ − θ)⊤Σ−1(x̄ − θ),

so the likelihood interval {θ : L(θ)/L(θ̂) ≥ c} has probability
P(χ2

d ≤ −2 log c) of containing θ∗

• Note that the presence of multiple parameters changes the
probability calibration; for example, with d = 5

◦ c = 0.15 now provides only a 0.42 probability of containing θ∗

◦ We now need c = 0.004 to attain 95% coverage
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“Pure” likelihood for multiparameter problems?

• The interval {θ : L(θ)/L(θ̂) ≥ c} is based purely on
likelihood; as we remarked in our first lecture, the interval
itself is neither Bayesian nor frequentist – those paradigms
arise only in attempting to assign this interval a probability

• Is a “pure” likelihood approach possible in the multiparameter
case (i.e., without the frequentist χ2 calculations to guide us)?

• Suppose the (relative) likelihood of each parameter is
(approximately) independent so that, for example, if
L(θ1) = 0.2 and L(θ2) = 0.2, then L(θ) = 0.22 = 0.04

• Using c = 0.15 leads to something of a contradiction: θ1 and
θ2 are both “likely”, but somehow the pair (θ1, θ2) is
“unlikely”
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“Pure” likelihood for the multiparameter case

• An obvious solution is to use cd: now if L(θ) < 0.152, then
we must have L(θ1) < 0.15 or L(θ2) < 0.15

• Furthermore, we can write {θ : L(θ)/L(θ̂) < cd} as

2ℓ(θ) − 2ℓ(θ̂) < 2d log c,

or, using the specific value c = e−1,

−2ℓ(θ̂) + 2d < −2ℓ(θ)

• We have arrived at AIC: θ̂ is an attractive model, despite
adding d parameters, if the above inequality holds
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Properties of the score: Introduction

• Earlier, we defined the score as the random function
u(θ) = ∇ℓ(θ|x)

• With some mild conditions, the random variable u(θ∗) turns
out to have some rather elegant properties

• These properties are at the core of proving many important
results about likelihood theory
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Expectation

• We saw earlier that u(θ∗) tends to vary randomly about zero;
let us now formalize this observation

• Theorem: Suppose the likelihood allows its gradient to be
passed under the integral sign. Then Eu(θ∗) = 0.

• A derivative is a type of limit, so whether or not it can be
passed under the integral sign is governed by the dominated
convergence theorem (we’ll go into more details next lecture)

• Note that this is an identity, not an asymptotic relationship
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Variance of the score

• Under similar conditions involving the second derivative, we
also have a nice result involving the variance: namely, that the
variance of the score is the expected information

• The variance of the score is called the Fisher information,
which we will denote I: I(θ) = Vu(θ|X); its connection
with our previous definition of information is made clear in the
following theorem

• Theorem: Suppose the likelihood allows its Hessian to be
passed under the integral sign. Then I(θ∗) = EI(θ∗|X).

• This requires the same sort of smoothness conditions as
before, except now applied to the second derivatives
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Remarks

• Recall that the information I(θ) = −∇2ℓ(θ) depends on the
data X

• By taking an expected value, we are essentially averaging over
different data sets that could occur, weighted by their
probability

• To distinguish between the two, the information using the
observed data is called the observed information

• Note: Keep in mind that that I is random, while I is fixed
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Notation

Notation to distinguish between all these information variants is
not universal, but here is what I’ll use in this class:

• I i is the observed information for observation i
• I is Fisher information for observation i (for iid data, this

will be the same for every observation, hence no i subscript)
• In is the observed information for the full sample
• In is the Fisher information for the full sample; if the data

are iid then
EIn = nI = In

• I is the identity matrix
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Distribution

• Furthermore, since u(θ|x) =
∑

i u(θ|xi), we can apply the
central limit theorem to see that

√
n{ū(θ∗) − Eu(θ∗)} d−→ N(0,I(θ∗)),

or

u(θ∗)√
n

d−→ N(0,I(θ∗))

• Showing that the maximum likelihood estimators, on the
other hand, are asymptotically normal (thereby justifying our
earlier normal-based inferential procedures) involves a bit
more work (we’ll take up this question in a later lecture)
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Observed vs expected information

• Earlier, we discussed the idea that the width of confidence
intervals depends on the information

• We’ve now introduced two kinds of information; which should
we use for inferential purposes?

• Broadly speaking, either one is fine: by the WLLN,
1
nI(θ) P−→ I(θ), so we have both

In(θ∗)−1/2u(θ∗) d−→ N(0, I)

and

In(θ∗)−1/2u(θ∗) d−→ N(0, I)

assuming I and I are positive definite
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Observed vs expected information (cont’d)

• In practice as well, the difference between the two is typically
not very important or noticeable

• However, they aren’t the same . . . surely one tends to be
better than the other?

• I’ll present some advantages of both observed and expected
information, but remember that they are far more alike than
they are different
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Advantages of Fisher information

The Fisher information has two major advantages
• Smoothness and stability

◦ Especially when n is small, the observed information can be
noisy, whereas its expectation is more unstable

◦ Fisher information is particularly attractive for software to
avoid numerical issues

• Mathematical tractability
◦ In many models, the Fisher information is easy to derive and

results in a great deal of cancellation, leading to much simpler
formulas
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Advantages of observed information

To illustrate the advantages of observed information, let’s consider
Ti

iid∼ Exp(θ) subject to right censoring, where the observed
information is d/θ2 while the expected information is Ed/θ2, with
d the number of uncensored events

• Always available: Fisher information can be impractical /
impossible to calculate

• Relevance: Suppose we observed more events than
expected. . . is it really relevant that we could have obtained a
sample with less information?

• Accuracy: In general, theoretical analysis and simulation
studies indicate that observed information results in more
accurate inference (Efron and Hinkley, 1978)
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