Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 3

Due: Monday, September 22

- 1. Matrix square root. Let **A** be a symmetric, positive definite matrix with eigendecomposition $\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathsf{T}}$.
 - (a) Find $A^{1/2}$ and show that it is a matrix square root.
 - If **A** was not symmetric, would your derivation still work?
 - If **A** was positive semidefinite, would your derivation still work?
 - (b) Find $A^{-1/2}$ and show that it is both the square root of A^{-1} and the inverse of $A^{1/2}$.
 - If **A** was not symmetric, would your derivation still work?
 - If **A** was positive semidefinite, would your derivation still work?
 - (c) From (b), it follows that $\mathbf{A}^{-1/2}\mathbf{A}\mathbf{A}^{-1/2} = \mathbf{I}$. If \mathbf{A} is not full rank, but we take generalized inverses where needed, what does $\mathbf{A}^{-1/2}\mathbf{A}\mathbf{A}^{-1/2}$ equal?
- 2. Trace and eigenvalues. Let **A** be a $d \times d$ symmetric matrix. Prove that $\operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i}$, where $\{\lambda_{i}\}_{i=1}^{d}$ are the eigenvalues of **A**.
- 3. Projection matrices and rank. A matrix \mathbf{P} satisfying $\mathbf{P} = \mathbf{PP}$ is known as an idempotent matrix, or projection matrix. Below, suppose that \mathbf{P} is a symmetric projection matrix.
 - (a) Show that every eigenvalue of **P** must be either 1 or 0.
 - (b) Show that the rank of **P** equals the trace of **P**.
- 4. Logistic regression derivatives. The logistic regression model states that Y_i is equal to 1 with probability π_i and 0 otherwise, with π_i related to a set of linear predictors $\{\eta_i\}$ by the following model:

$$\log \frac{\pi_i}{1 - \pi_i} = \eta_i \quad \text{for } i = 1, 2, \dots, n$$
$$\boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$$

where $\eta \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$, and **X** is an $n \times d$ matrix. Let $\ell : \mathbb{R}^n \to \mathbb{R}$ denote the log-likelihood, $\ell = \sum_{i=1}^n \ell_i$, where ℓ_i is the contribution to the log-likelihood from observation i. For (c), (e), and (f), express your answer in vector/matrix notation, not as a collection of scalar terms (i.e., something like $\mathbf{a} + \mathbf{b}$, not $z_1 = 1, z_2 = 3, \ldots$).

- (a) Find $\partial \ell_i/\partial \eta_i$. Simplify your answer as much as possible.
- (b) Find $\partial^2 \ell_i / \partial \eta_i^2$. Simplify your answer as much as possible.
- (c) Find $\partial \ell/\partial \eta$.
- (d) Find $\partial^2 \ell / \partial \eta^2$.
- (e) Find $\partial \eta / \partial \beta$.
- (f) Find $\partial \ell / \partial \beta$.

5. Exponential Taylor series.

(a) Show that for any x,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Note: one can partially prove this using the Poisson distribution, but this proof would only work for x > 0.

- (b) Starting with the result in (a), derive the infinite series for b^x , where b > 0.
- (c) Let $f : \mathbb{R}^d \to \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x}) = \exp(\mathbf{a}^{\top}\mathbf{x})$ about $\mathbf{x} = \mathbf{0}$? Give both the o-notation and Lagrange forms.
- (d) Suppose $\mathbf{a} = \begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ and $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. Find the point $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.