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Introduction

• It is often the case in statistics that one knows something
about the convergence of xn, but then we want to know
something about the convergence of some function of the
random vector g(xn)

• Today, we’ll go over three useful tools for drawing these kinds
of conclusions

◦ The continuous mapping theorem
◦ Slutsky’s theorem
◦ The delta method
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Continuous mapping theorem

• The continuous mapping theorem is a simple, but very useful
result

• It says that if xn → x (in any sense), then g(xn) → g(x) (in
the same sense) if g is continuous

• Theorem (continuous mapping): Let g : Rd → Rk be
continuous almost everywhere with respect to x.

◦ If xn
d−→ x, then g(xn) d−→ g(x)

◦ If xn
P−→ x, then g(xn) P−→ g(x)

◦ If xn
as−→ x, then g(xn) as−→ g(x)
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Example #1

• The continuous mapping theorem is extremely useful and
allows formal justification of all kinds of things seem obvious,
such as: we should be able to “square both sides” of a
convergence statement

• For example, suppose Zn
d−→ N(0, 1); then we immediately

have Z2
n

d−→ χ2
1

• Again, the key requirement is continuity; if the function isn’t
continuous, all bets are off

• For example, suppose Xn
P−→ 0, and

g(x) =
{

0 x = 0
1 x ̸= 0

;

g(0) = 0, but g(Xn) P−→ 1 if Xn is continuous
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Example #2

• Note that only continuity at 0 was relevant in that last
example, since P (X = 0) = 1

• By contrast, if Xn
P−→ 1 or Xn

d−→ N(0, 1), then the CMT
would hold since g(x) would be continuous almost everywhere

• As a multivariate example, we proved the central limit theorem
√

n(x̄n − µ) d−→ N(0, Σ);

by the continuous mapping theorem, we immediately have the
corollary

√
nΣ−1/2(x̄n − µ) d−→ N(0, I)
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Example #3

• The result even extends to matrices (you can imagine stacking
the columns of the d × x matrix into a giant vector of
dimension d · k)

• Proving these facts is beyond the scope of this course, but:
◦ Matrix inversion is a continuous function (unless the matrix is

singular)
◦ Taking the square root of a positive definite matrix is also

continuous
• So for example, if Xn

P−→ A, then X−1
n

P−→ A−1 provided
that A is not singular
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Asymptotic equivalence

• Another very useful result is Slutsky’s theorem, which we will
present here in a rather general form

• Before we prove this result, we need to introduce the following
lemma concerning asymptotically equivalent sequences

• Two sequences of random vectors xn and yn are said to be
asymptotically equivalent if xn − yn

P−→ 0.
• Lemma (asymptotic equivalence): If xn

d−→ x and
xn − yn

P−→ 0, then yn
d−→ x.

• In words, the lemma is saying that asymptotically equivalent
sequences have the same limiting distributions
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Slutsky’s theorem

• This lemma is necessary to prove Slutsky’s theorem:
• Theorem (Slutsky): If xn

d−→ x and yn
P−→ a, where a is a

constant, then [
xn

yn

]
d−→

[
x
a

]
.

• This is perhaps not the form in which you are used to seeing
Slutsky’s theorem; the name “Slutsky’s theorem” is widely
used in an inconsistent manner to mean a number of similar
results
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Remarks

• This result along with the continuous mapping theorem
implies all of the results that people often call “Slutsky’s
theorem”

• For example, we have the familiar Xn + Yn
d−→ X + a and

XnYn
d−→ aX since additional and multiplication are

continuous functions
• But we also have much more complex statements; for

example, if x1, x2, . . . is an iid sample with mean µ and
nonsingular variance, then

n(x̄ − µ)⊤S−1
n (x̄ − µ) d−→ χ2

d
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Delta method

• There is one last important type of transformation that
Slutsky/CMT do not address: suppose we know the
distribution of x − µ and want to know the distribution of
g(x) − g(µ)

• This result is described by a theorem known as the delta
method

• Theorem (Delta method): Let g : Rd → Rk such that ∇g
is continuous in a neighborhood of µ ∈ Rd and suppose
√

n(xn − µ) d−→ x. Then
√

n(g(xn) − g(µ)) d−→ ∇g(µ)⊤x.
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Normal distribution corollary

• This typically comes when dealing with functions of sample
moments, which are multivariate normal by the CLT

• Corollary (Delta method): Let g : Rd → Rk such that ∇g is
continuous in a neighborhood of µ ∈ Rd and suppose
√

n(xn − µ) d−→ N(0, Σ). Then
√

n(g(xn) − g(µ)) d−→ N(0, ∇g(µ)⊤Σ∇g(µ)).

• Our proof of the delta method illustrates an important point
worth noting for the future: applying a Taylor series expansion
requires conditions, but these conditions only need to be met
with probability tending to 1 in order to establish convergence
in distribution (asymptotic equivalence lemma)
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Example

• While the delta method is certainly a useful result, it should
be noted that the rate of convergence can vary widely
depending on both µ and g

• For example, let’s look at the function g(µ) = µ2

• By the delta method and the CLT, we have
√

n(x̄2 − µ2) d−→ N(0, 4µ2σ2)

• Note that this isn’t even the same rate of convergence for all
µ: x̄2 − µ2 is Op(1/

√
n) in general, but Op(1/n) when µ = 0
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Example (cont’d)
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Remarks

• The relevance to statistical practice is that a common use of
the delta method is to derive approximate confidence intervals
for unknown parameters

• However, not all transformations and not all values of the
unknown parameters converge to normality equally fast

• In practice, this means that some transformations produce
much more accurate confidence intervals than others, and it is
not always obvious which transformation is best

• Furthermore, a confidence interval procedure can be good for
some values of θ but poor at other values
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