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Intro

• In our analysis review, we went over some results pertaining to
the convergence of deterministic sequences of numbers and
functions

• For statistical theory, we must extend these ideas to the
convergence of random variables

• In doing so, there are actually several different ways we can
characterize convergence

• You’ve seen these ideas in previous classes; our goal for today
is to review these ideas and discuss their relationships in some
ways that maybe you haven’t seen before
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Convergence in distribution

• Probably the most useful type of convergence (and the most
straightforward extension from regular analysis) is convergence
in distribution (also called convergence in law, or weak
convergence)

• Definition: A sequence of random variables xn converges in
distribution to the random variable x, denoted xn

d−→ x, if for
all points a at which F is continuous, we have Fn(a) → F (a).

• In other words, convergence in distribution is just regular
pointwise convergence, applied to CDFs
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Convergence in distribution and continuity

• Why the continuity requirement?
• Consider the following example:

◦ Xn = 1/n with probability 1
◦ X = 0 with probability 1

• Seems obvious that the distribution of Xn converges to the
distribution of X, and yet

◦ Fn(0) → 0
◦ F (0) = 1

• In other words, Fn → F everywhere except the discontinuity
point at 0
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Generalized inequalities

• Now is a good time to mention something about generalized
inequalities

• For a univariate distribution, FX(a) means P{X ≤ a};
however, the notation x ≤ a is potentially ambiguous for
vectors (what if some xj > aj and some xj < aj?)

• To be explicit, the notation ⪯ is sometimes used instead,
where x ⪯ a is defined to mean a − x ∈ Rd

+
• In other words, x ⪯ a means that xj ≤ aj for all j

• Returning to CDFs, Fx(a) means P{x ⪯ a} or equivalently,
P{∩d

j=1xj ≤ aj}
• It does not mean P{∥x∥ ⪯ a},
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Generalized inequalities (cont’d)

• The strict inequality is defined similarly, with x ≺ a defined to
mean a − x ∈ Rd

++, or xj < aj for all j

• This definition probably seems unnecessarily abstract;
however, it is useful in defining inequalities for more complex
objects

• In particular, the generalized inequality A ⪯ B means that
the matrix B − A belongs to the set of positive semidefinite
matrices (and A ≺ B meaning that B − A is positive definite)
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Convergence in probability

• Definition: A sequence of random vectors xn converges in
probability to the random vector x, denoted xn

P−→ x, if for
all δ > 0,

P{∥xn − x∥ > δ} → 0

• Recalling the definition of convergence, note what
convergence in probability requires: for all ϵ > 0 and all δ > 0,
there exists N such that

P{∥xn − x∥ > δ} < ϵ

for all n > N
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Convergence in probability vs convergence in distribution

• Often, we are interested in convergence in probability to a
constant; in this case convergence in probability and
convergence in distribution are equivalent

• Theorem: Let a ∈ Rd. Then xn
P−→ a if and only if

xn
d−→ a.

• Note, of course, that if xn
d−→ x, where x is a random vector,

then certainly convergence in distribution does not imply
convergence in probability (two random variables with the
same distribution can be very far apart)
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Illustration: CDF of a point (relevant to proof)

a

0

0

0

1
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Weak law of large numbers

• In statistics, convergence in probability to a constant is often
connected to the idea of consistency; an estimator θ̂ is said to
be a consistent estimator of θ if θ̂

P−→ θ

• For example, later in the course we will take up the question:
under what conditions are maximum likelihood estimators
consistent?

• The most important and well-known consistency result is the
law of large numbers

• Theorem (Weak law of large numbers): Let x, x1, x2, . . .
be independently and identically distributed random vectors
such that E∥x∥ < ∞. Then x̄n

P−→ µ, where µ = E(x).
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Note on existence of moments

• A brief aside on the existence of means
• In the univariate case, the mean exists if and only if
E |X| < ∞

• The equivalent idea in multiple dimensions is that E(x) exists
if and only if E∥x∥ < ∞ (not as obvious as in the
one-dimensional case, but easiest to see if we consider ∥·∥1)

• The same goes for higher moments as well: E∥x∥2 < ∞ is
equivalent to saying that the variance exists

• Authors (including me) often use the norm version in stating
proof conditions just because it’s more compact, but keep in
mind that it has more to do with existence of mean/variance
than the norm itself
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op notation

• A few weeks ago, we introduced O, o notation and mentioned
that they had analogs for probabilistic convergence; let’s
return to that idea now

• Definition: A sequence of random vectors xn is said to be
op(1) if it converges to 0 in probability. Furthermore, xn is
said to be op(rn) if

xn

rn

P−→ 0.

• Note that this is exactly the same definition as o(·), only with
→ replaced by P−→
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Bounded in probability

• Op(·) is conceptually the same as O(·), but somewhat more
complicated to define

• Definition: A sequence of random variables xn is bounded in
probability if for any ϵ > 0, there exist M and N such that
P{∥xn∥ > M} < ϵ for all n > N .

• Often, this is easiest to show through convergence in
distribution: if there exists a random variable x such that
xn

d−→ x, then xn is bounded in probability
• Definition: A sequence of random variables xn is said to be

Op(1) if it is bounded in probability. Furthermore, xn is said
to be Op(rn) if xn/rn is bounded in probability.
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Algebra of Op, op notation

The rules of working with Op and op terms are exactly the same as
in the deterministic case:
Theorem: For a ≤ b:

Op(1) + Op(1) = Op(1) Op{Op(1)} = Op(1)
op(1) + op(1) = op(1) op{Op(1)} = op(1)
op(1) + Op(1) = Op(1) op(rn) = rnop(1)

Op(1)Op(1) = Op(1) Op(rn) = rnOp(1)
Op(1)op(1) = op(1) Op(na) + Op(nb) = Op(nb)

{1 + op(1)}−1 = Op(1) op(na) + op(nb) = op(nb)
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Examples

Suppose x
iid∼ (µ, σ2), with σ2 > 0 1

• xi = Op(1)
• ∑

i xi = Op(
√

n) if µ = 0
• ∑

i xi = Op(n) if µ ̸= 0
• ∑

i x2
i = Op(n)

1the notation (µ, σ2) means that the mean is µ and variance is σ2 but the
distribution is otherwise left unspecified
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√
n-consistency

• The idea of consistency is often too weak to be interesting:
any reasonable estimator is consistent given an infinite amount
of data – often, many estimators satisfy this requirement

• We can reveal more about their relative accuracy by noting
the rate of convergence

• For example, θ̂ is said to be a
√

n-consistent estimator of θ if
∥θ̂ − θ∥ = Op(1/

√
n)

• This means that not only does θ̂ get close to θ as n → ∞,
but it converges to θ so fast that it stays within an
ever-shrinking neighborhood NM/

√
n(θ) with high probability

• As we will see, the MLE θ̂ tends to be
√

n-consistent
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Convergence in rth mean

• An alternative form of convergence is to consider the
convergence of moments

• Definition: For any real number r > 0, xn converges in rth
mean to x, denoted xn

r−→ x, if

E∥xn − x∥r → 0.

• This is most useful in the case when r = 2, where it is called
convergence in quadratic mean and denoted xn

qm−→ x
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Convergence in mean vs convergence in probability

• Convergence in quadratic mean is particularly useful as it
often provides an easy way to prove consistency due to the
following two facts

• Theorem: If xn
r−→ x for some r > 0, then xn

P−→ x.
• Theorem: If a ∈ Rd, then xn

qm−→ a if and only if Exn → a
and Vxn → 0.
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Another law of large numbers

• It is also worth pointing out and proving another law of large
numbers, this time involving convergence in quadratic mean

• Theorem (Law of large numbers): Let x, x1, x2, . . . be
independently and identically distributed random vectors such
that E∥x∥2 < ∞. Then x̄n

qm−→ µ, where µ = E(x).
• Note that this proof did not actually require {xi} to be

independent or identically distributed, only that they are
uncorrelated and have the same mean and variance

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 19 / 33



Weak convergence
Convergence of moments

Strong convergence

Convergence in mean
Interchanging limits and integrals

Convergence in distribution vs convergence of means

• Now, suppose xn
d−→ x; can we conclude that Exn → Ex?

• As it turns out, no, not necessarily
• As a counterexample,

Xn =
{

n with probability 1/n

0 with probability 1 − 1/n

• We have Xn
P−→ 0 (and thus, Xn

d−→ 0), but EXn → 1
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Dominated convergence theorem

• The problem here is that the sequence {Xn} is not bounded
(or more accurately, not uniformly bounded)

• If the sequence {Xn} is able to be bounded, however, then
the moments do converge; this result is known as the
dominated convergence theorem, which we previously
encountered in pure integral form

• Theorem (Dominated convergence): If there exists a
random variable Z such that ∥xn∥ ≤ Z for all n and
EZ < ∞, then xn

d−→ x implies that Exn → Ex.
• Note that if {Xn} is uniformly bounded by a constant, then

the DCT clearly applies
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Almost sure convergence

• The final type of convergence we will discuss is called almost
sure convergence, also known as strong convergence or
convergence with probability 1 (sometimes abbreviated wp1)

• Definition: A sequence of random variables xn converges
almost surely to the random variable x, denoted xn

as−→ x, if

P
{

lim
n→∞

xn = x
}

= 1.

• This type of convergence is a bit more abstract than
convergence in distribution, probability, or mean, but on the
other hand is sometimes easier to work with since the limit
operation takes place inside the probability expression, and
thus involves only deterministic considerations
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Strong law of large numbers

• As with convergence in probability, we are often concerned
with almost sure convergence to a constant, and in particular
with convergence of an estimator θ̂ to the true value θ

• If θ̂
as−→ θ, then θ̂ is said to be a strongly consistent estimator

of θ

• The sample mean, for example, is a strongly consistent
estimator of E(X)

• Theorem (Strong law of large numbers): Let x, x1, x2, . . .
be independently and identically distributed random vectors
such that E∥x∥ < ∞. Then x̄n

as−→ µ, where µ = E(x).
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Alternate definition

• The following equivalent definition of almost sure convergence
helps to highlight the difference between almost sure
convergence and convergence in probability

• Definition: A sequence of random variables xn converges
almost surely to the random variable x, denoted xn

as−→ x, if
for every ϵ > 0,

P{∥xk − x∥ < δ for all k ≥ n} → 1

as n → ∞
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Alternate definition (cont’d)

• In other words, for every ϵ > 0,
◦ Convergence in probability requires that P{∥xn − x∥ < δ} → 1
◦ Convergence almost surely requires that ∥xk − x∥ < δ for all

k > n

• Since the second event is a subset of the first, we can
immediately see that convergence almost surely implies
convergence in probability

• Theorem: xn
as−→ x =⇒ xn

P−→ x.
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Converse?

• The converse, however, is not true: it is possible for xn to
converge to x in probability, but not almost surely

• That said, finding a counterexample is not trivial and most of
them that you find in textbooks tend to be rather contrived,
making it hard to see how this idea is relevant to statistics

• However, let us consider an interesting and rather surprising
result known as the Law of the Iterated Logarithm
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Law of the iterated logarithm

• Theorem (Law of the iterated logarithm): Let
Z1, Z2, . . .

iid∼ (0, 1). Then

lim sup
n→∞

∑n
i=1 Zi√

n log log n
=

√
2

almost surely.
• From the central limit theorem, we know that

√
nZ̄ is spread

out over the entire real line:
√

nZ̄
d−→ N(0, 1)

• On the other hand, the LIL is saying that if we divide
√

nZ̄ by√
log log n, then this is no longer the case – it stays within the

region [−
√

2,
√

2] almost surely
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Convergence of Zn

• Let Xn =
√

nZ̄/
√

log log n denote the quantity on the
previous slide

• We know that Xn
P−→ 0 (why?)

• However, the LIL indicates that Xn does not converge almost
surely to 0; indeed, it doesn’t converge to anything and
instead wanders around the interval [−

√
2,

√
2] forever
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Illustration
A picture helps to illustrate the situation:

0 20000 40000 60000 80000 100000

−2

−1

0

1

2

n

X

Eventually, each of these lines will reach the dotted lines at ±
√

2
infinitely often (i.e., get within ϵ of them)
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Implications for inference

• So, what are the implications for statistical inference?
• Suppose we construct standard 95% confidence intervals for µ

based on the known σ2 = 1: Z̄ ± 1.96/
√

n

• Those confidence intervals will contain the true value of µ = 0
if and only if

|Xn| ≤ 1.96√
log log n

• However, when n is large enough (n > 921), this quantity is
less than

√
2, so the law of the iterated logarithm says that

with probability 1, our confidence interval will eventually
exclude the true value of µ
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Another illustration

The red lines are ±1.96/
√

log log n, any time Xn passes outside
them, the CI excludes the truth
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Weak vs strong convergence

• So on the one hand, by convergence in distribution (weak), we
have that for any ϵ, we can limit our Type I error below ϵ at
any specific value of n (provided n is large enough)

• On the other hand, by convergence almost surely (strong), we
know that no matter how low our Type I error is (ϵ), we will
eventually make Type I errors for some n (in fact, infinitely
often as n → ∞)
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Is this bad?

• Is this a problem?
• On one hand, we can be certain that no matter what, our

confidence intervals will eventually be wrong – sounds bad
• On the other hand, imagine that we have 100 statisticians

collecting another data point every minute and updating their
95% confidence intervals

• We know that 5 of them will be wrong; the LIL tells us that
everyone eventually has to take a turn being wrong, which
seems only fair

• Finally, note that we have to go out to pretty ridiculous
sample sizes (n = 10200) in order to start seeing the difference
between strong and weak convergence (i.e., not a huge issue
in practice)

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 33 / 33


	Weak convergence
	Convergence in distribution
	Convergence in probability
	Op notation

	Convergence of moments
	Convergence in mean
	Interchanging limits and integrals

	Strong convergence
	Convergence almost surely
	Relationship between strong and weak convergence


