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Introduction

One final lecture of analysis review, in which we will
• Review matrix algebra

• Use it to go over vector calculus

• Use that to introduce multivariate Taylor series expansions,
the most important mathematical tool in this course
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Linear algebra

• Note: If this material is unfamiliar to you, consult this review
• As we have seen, it is often useful to transpose a matrix

(switch its rows and columns around); this is denoted with a
superscript ⊤ or an apostrophe ′:

M =

 3 2
4 −1

−1 2

 M⊤ =
[

3 4 −1
2 −1 2

]
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Linear and quadratic forms

Matrix products involving linear and quadratic forms come up very
often in statistics, and it is important to have an intuitive grasp on
what they represent:

a⊤x =
∑

i

aixi; 1⊤x =
∑

i

xi

A⊤x = (
∑

i

ai1xi · · ·
∑

i

aikxi)⊤

a⊤Wx =
∑

i

∑
j

aiwijxj ; a⊤1x =
∑

i

∑
j

aixj

(AWB)ij =
∑

k

∑
m

aikwkmbmj
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Inverses

• Definition: The inverse of an n × n matrix A, denoted A−1,
is the matrix satisfying AA−1 = A−1A = In, where In is the
n × n identity matrix.

• Note: We’re sort of getting ahead of ourselves by saying that
A−1 is “the” matrix satisfying AA−1 = In, but it is indeed
the case that if a matrix has an inverse, the inverse is unique

• Some useful results:

(A + B)⊤ = A⊤ + B⊤

(AB)⊤ = B⊤A⊤

(AB)−1 = B−1A−1

(A⊤)−1 = (A−1)⊤
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Singular matrices

• However, not all matrices have inverses; for example

A =
[

1 2
2 4

]

• There does not exist a matrix such that AA−1 = I2

• Such matrices are said to be singular
• Remark: Only square matrices have inverses; an n × m matrix

A might, however, have a left inverse (satisfying BA = Im)
or right inverse (satisfying AB = In)
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Positive definite

• A related notion is that of a “positive definite” matrix, which
(at least for us) applies only to symmetric matrices

• Definition: A symmetric n × n matrix A is said to be
positive definite if for all x ∈ Rn,

x⊤Ax > 0 if x ̸= 0

• The two notions are related: if A is positive definite, then (a)
A is not singular and (b) A−1 is also positive definite

• If x⊤Ax ≥ 0, then A is said to be positive semidefinite
• In statistics, these classifications are particularly important for

variance-covariance matrices, which are always positive
semidefinite (and positive definite, if they aren’t singular)
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Square root of a matrix

• These concepts are important with respect to knowing
whether a matrix has a “square root”

• Definition: An n × n matrix A is said to have a square root
if there exists a matrix B such that BB = A.

• Theorem: Let A be a positive semidefinite matrix. Then
there exists a unique matrix A1/2 such that A1/2A1/2 = A.
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Rank

• We also need to be familiar with the concept of matrix rank
(there are many ways of defining rank; all are equivalent)

• Definition: The rank of a matrix is the dimension of its
largest nonsingular submatrix.

• For example, the following 3 × 3 matrix is singular, but
contains a nonsingular 2 × 2 submatrix, so its rank is 2:

A =

 1 2 �3
�2 �4 �6
1 0 �1


• Note that a nonsingular n × n matrix has rank n, and is said

to be full rank
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Rank and multiplication

• There are many results and theorems involving rank; we’re not
going to cover them all, but it is important to know that rank
cannot be increased through the process of multiplication

• Theorem: For any matrices A and B with appropriate
dimensions, rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).

• In particular, rank(A⊤A) = rank(AA⊤) = rank(A)
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Expectation and variance

• In addition, we need some results on expected values of
vectors and functions of vectors

• First of all, we need to define expectation and variance as
they pertain to random vectors

• Definition: Let x = (X1 X2 · · · Xd)⊤ denote a vector of
random variables, then E(x) = (EX1 EX2 · · ·EXd)⊤.
Meanwhile, Vx is a d × d matrix:

Vx = E{(x − µ)(x − µ)⊤} with elements
(Vx)ij = E {(Xi − µi)(Xj − µj)} ,

where µi = EXi. The matrix Vx is referred to as the
variance-covariance matrix of x.
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Linear and quadratic forms
• Letting A denote a matrix of constants and x a random

vector with mean µ and variance Σ,

E(A⊤x) = A⊤µ

V(A⊤x) = A⊤ΣA
E(x⊤Ax) = µ⊤Aµ + tr(AΣ),

where tr(A) =
∑

i Aii is the trace of A
• Some useful facts about traces:

tr(AB) = tr(BA)
tr(A + B) = tr(A) + tr(B)

tr(cA) = c tr(A)
tr(A) = rank(A) if AA = A
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Eigendecompositions

• Finally, we’ll also take a moment to introduce some facts
about eigenvalues

• The most important thing about eigenvalues is that they
allow us to “diagonalize” a matrix: if A is a symmetric d × d
matrix, then it can be factored into:

A = QΛQ⊤,

where Λ is a diagonal matrix containing the eigenvalues
λ1, λ2, . . . , λd of A and the columns of Q are its eigenvectors

• Furthermore, eigenvectors are orthonormal, so we have
Q⊤Q = QQ⊤ = I
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Eigenvalues and “size”

• This is very helpful from a conceptual standpoint, as it allows
us to separate the “size” of a matrix (Λ) from its
“direction(s)” (Q)

• For example, we have already seen that one measure of the
size of a matrix is based on λmax (for a symmetric matrix, its
spectral norm is its largest eigenvalue)

• In addition, the trace and determinant, two other ways of
quantifying the “size” of a matrix, are simple functions of the
eigenvalues:

◦ tr(A) =
∑

i λi

◦ |A| =
∏

i λi
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Eigenvalues and inverses

• Once one has obtained the eigendecomposition of A,
calculating its inverse is straightforward

• If A is not singular, then A−1 = QΛ−1Q⊤; note that since Λ
is diagonal, its inverse is trivial to calculate

• Even if A is singular, we can obtain something called a
“generalized inverse”: A− = QΛ−Q⊤, where (Λ−)ii = λ−1

i if
λi ̸= 0 and (Λ−)ii = 0 otherwise

• Many other important properties of matrices can be deduced
entirely from their eigenvalues:

◦ A is positive definite if and only if λi > 0 for all i
◦ A is positive semidefinite if and only if λi ≥ 0 for all i
◦ If A has rank r, then A has r nonzero eigenvalues and the

remaining d − r eigenvalues are zero
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Extreme values

• Lastly, there is a connection between a matrix’s eigenvalues
and the extreme values of its quadratic form

• Let the eigenvalues λ1, . . . , λd of A be ordered from largest to
smallest. Over the set of all vectors x such that ∥x∥2 = 1,

max x⊤Ax = λ1

and

min x⊤Ax = λd
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Real-valued functions: Derivative and gradient

• We’re now ready to talk about vector calculus, which is
extremely important in statistics

• Definition: For a function f : Rd 7→ R, its derivative is the
1 × d row vector

ḟ(x) =
[

∂f
∂x1

· · · ∂f
∂xd

]
• In statistics, it is generally more common (but not always the

case) to use the gradient (also called “denominator layout” or
the “Hessian formulation”)

∇f(x) = ḟ(x)⊤;

i.e., ∇f(x) is a d × 1 column vector
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Vector-valued functions

• Definition: For a function f : Rd 7→ Rk, its derivative is the
k × d matrix with ijth element

ḟ(x)ij = ∂fi(x)
∂xj

• Correspondingly, the gradient is a d × k matrix:

∇f(x) = ḟ(x)⊤

• In our course, this will usually come up in the context of
taking second derivatives; however, by the symmetry of
second derivatives, we have

∇2f(x) = f̈(x)
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Vector calculus identities

Inner product: ∇x(A⊤x) = A
Quadratic form: ∇x(x⊤Ax) = (A + A⊤)x
Chain rule: ∇xf(y) = ∇xy∇yf
Product rule: ∇(f ⊤g) = (∇f)g + (∇g)f
Inverse function theorem: ∇xy = (∇yx)−1
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Vector calculus identities (row-vector layout)

Inner product: Dx(Ax) = A
Quadratic form: Dx(x⊤A⊤x) = x⊤(A + A⊤)
Chain rule: Dxf(y) = DyfDxy
Product rule: D(f ⊤g) = g⊤ḟ + f ⊤ġ
Inverse function theorem: Dxy = (Dyx)−1

I don’t expect to use these, but for your future reference, here they
are
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Practice

Exercise: In linear regression, the ridge regression estimator is
obtained by minimizing the function

∥y − Xβ∥2
2 + λ∥β∥2

2,

where λ is a prespecified tuning parameter. Show that

β̂ridge = (X⊤X + λI)−1X⊤y.
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Taylor series: Introduction

As we will see (many times!), it is useful to be able to approximate
a complicated function with a simple polynomial (this is the idea
behind Taylor series approximation):

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4

-3

-2

-1

0

1

x

f(
x
)
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Taylor series: Introduction (cont’d)

• It is difficult to overstate the importance of Taylor series
expansions to statistical theory, and for that reason we are
now going to cover them fairly extensively

• In particular, Taylor’s theorem comes in a number of versions,
and it is worth knowing several of them, since they come up in
statistics quite often

• Furthermore, students often have not seen the multivariate
versions of these expansions
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Taylor’s theorem

• Theorem (Taylor): Suppose n is a positive integer and
f : R 7→ R is n times differentiable at a point x0. Then

f(x) =
n∑

k=0

f (k)(x0)
k! (x − x0)k + Rn(x, x0),

where the remainder Rn satisfies

Rn(x, x0) = o(|x − x0|n)as x → x0

• If f (n+1)(x0) exists, you could also say that Rn is
O(|x − x0|n+1)

• This form of the remainder is sometimes called the Peano form
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): Suppose f : R 7→ R is n + 1 times
differentiable on an open interval containing x0. Then for any
point x in that interval, there exists x̄ ∈ (x, x0):

Rn(x, x0) = f (n+1)(x̄)
(n + 1)! (x − x0)n+1.

• This is also known as the mean-value form, as the mean value
theorem is the central idea in proving the result
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Comparing the two forms

• Comparing the Basic and Lagrange forms for a second-order
expansion,

f(x0) + f ′(x0)(x − x0) + 1
2f ′′(x0)(x − x0)2 + o(|x − x0|2)

f(x0) + f ′(x0)(x − x0) + 1
2f ′′(x̄)(x − x0)2

• We can see that in the second case, we have a simpler
expression, but to obtain it, we require f ′′ to exist along the
entire interval from x to x0, not just at the point x0
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Example: Absolute value

• For example, consider approximating the function f(x) = |x|
at x0 = −0.1

• Note that f ′ exists at x0, but not at 0
• The basic form of Taylor’s theorem says that if we get close

enough to x0, the approximation f(−0.1) + f ′(−0.1)(x + 0.1)
becomes very accurate – indeed, the remainder is exactly zero
for any x within 0.1 of x0

• However, suppose x = 0.2; since f is not differentiable at zero,
we are not guaranteed the existence of a point x̄ such that

f(0.2) = f(−0.1) + 0.3f ′(x̄);

and indeed in this case no such point exists
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Lagrange bound

• One reason why the Lagrange form is more powerful is that it
allows us to establish error bounds – to know exactly how
close x must be to x0 in order to ensure that the
approximation error is less than ϵ

• In particular, if there exists an M such that
∣∣∣f (n+1)(·)

∣∣∣ ≤ M

over the interval (x, x0), then

|Rn(x)| ≤ M

(n + 1)! |x − x0|n+1
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Multivariable forms of Taylor’s theorem

• We now turn our attention to the multivariate case
• For the sake of clarity, I’ll present the first- and second-order

expansions for each of the previous forms, rather than
abstract formulae involving f (n)

• Lastly, I’ll provide a form that goes out to third order,
although higher orders are less convenient as they can’t be
represented compactly using vectors and matrices

• Note that these forms are only covering the case of
scalar-valued functions f : Rd 7→ R; we will need results for
the vector-valued case f : Rd 7→ Rk as well, but we will go
over that in a later lecture
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Taylor’s theorem

• Theorem (Taylor): Suppose f : Rd 7→ R is differentiable at a
point x0. Then

f(x) = f(x0) + ∇f(x0)⊤(x − x0) + o(∥x − x0∥)

• Theorem (Taylor): Suppose f : Rd 7→ R is twice
differentiable at a point x0. Then

f(x) = f(x0) + ∇f(x0)⊤(x − x0)+
1
2(x − x0)⊤∇2f(x0)(x − x0) + o(∥x − x0∥2)
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): Suppose f : Rd 7→ R is differentiable on
Nr(x0). Then for any x ∈ Nr(x0), there exists x̄ on the line
segment connecting x and x0 such that

f(x) = f(x0) + ∇f(x̄)⊤(x − x0)

• Theorem (Taylor): Suppose f : Rd 7→ R is twice
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there
exists x̄ on the line segment connecting x and x0 such that

f(x) = f(x0) + ∇f(x0)⊤(x − x0)+
1
2(x − x0)⊤∇2f(x̄)(x − x0)

• “x̄ on the line segment connecting x and x0” means that
there exists w ∈ [0, 1] such that x̄ = wx + (1 − w)x0
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Taylor’s theorem: Third order

Theorem (Taylor): Suppose f : Rd 7→ R is three times
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there exists x̄
on the line segment connecting x and x0 such that

f(x) = f(x0) +
d∑

j=1

∂f(x0)
∂xj

(xj − x0j)

+ 1
2

d∑
j=1

d∑
k=1

∂2f(x0)
∂xj∂xk

(xj − x0j)(xk − x0k)

+ 1
6

d∑
j=1

d∑
k=1

d∑
ℓ=1

∂3f(x̄)
∂xj∂xk∂xℓ

(xj − x0j)(xk − x0k)(xℓ − x0ℓ),

where ∂f(x0)/∂xj is shorthand for ∂f(x)/∂xj evaluated at x0
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