Matrix algebra, vector calculus, and Taylor series

Patrick Breheny

September 9, 2024

Introduction

One final lecture of analysis review, in which we will

- Review matrix algebra
- Use it to go over vector calculus
- Use that to introduce multivariate Taylor series expansions, the most important mathematical tool in this course

Linear algebra

- Note: If this material is unfamiliar to you, consult this review
- As we have seen, it is often useful to *transpose* a matrix (switch its rows and columns around); this is denoted with a superscript [⊤] or an apostrophe ':

$$\mathbf{M} = \begin{bmatrix} 3 & 2\\ 4 & -1\\ -1 & 2 \end{bmatrix} \qquad \mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 3 & 4 & -1\\ 2 & -1 & 2 \end{bmatrix}$$

Basic linear algebra Random matrices Eigenvalues

Linear and quadratic forms

Matrix products involving linear and quadratic forms come up very often in statistics, and it is important to have an intuitive grasp on what they represent:

$$\mathbf{a}^{\mathsf{T}}\mathbf{x} = \sum_{i} a_{i}x_{i}; \quad \mathbf{1}^{\mathsf{T}}\mathbf{x} = \sum_{i} x_{i}$$
$$\mathbf{A}^{\mathsf{T}}\mathbf{x} = (\sum_{i} a_{i1}x_{i} \quad \cdots \quad \sum_{i} a_{ik}x_{i})^{\mathsf{T}}$$
$$\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{x} = \sum_{i} \sum_{j} a_{i}w_{ij}x_{j}; \quad \mathbf{a}^{\mathsf{T}}\mathbf{1}\mathbf{x} = \sum_{i} \sum_{j} a_{i}x_{j}$$
$$(\mathbf{AWB})_{ij} = \sum_{k} \sum_{m} a_{ik}w_{km}b_{mj}$$

Linear algebra backgroundBasic linear algebraVector calculusRandom matricesTaylor series expansionsEigenvalues

Inverses

- **Definition:** The *inverse* of an $n \times n$ matrix \mathbf{A} , denoted \mathbf{A}^{-1} , is the matrix satisfying $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$, where \mathbf{I}_n is the $n \times n$ identity matrix.
- Note: We're sort of getting ahead of ourselves by saying that A^{-1} is "the" matrix satisfying $AA^{-1} = I_n$, but it is indeed the case that if a matrix has an inverse, the inverse is unique
- Some useful results:

$$(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$$
$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$$

Singular matrices

However, not all matrices have inverses; for example

$$\mathbf{A} = \left[\begin{array}{rr} 1 & 2 \\ 2 & 4 \end{array} \right]$$

- There does not exist a matrix such that $\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_2$
- Such matrices are said to be *singular*
- Remark: Only square matrices have inverses; an n × m matrix
 A might, however, have a *left inverse* (satisfying BA = I_m)
 or *right inverse* (satisfying AB = I_n)

Positive definite

- A related notion is that of a "positive definite" matrix, which (at least for us) applies only to symmetric matrices
- Definition: A symmetric n × n matrix A is said to be positive definite if for all x ∈ ℝⁿ,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0$$
 if $\mathbf{x} \neq 0$

- The two notions are related: if A is positive definite, then (a) A is not singular and (b) A^{-1} is also positive definite
- If $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \ge 0$, then \mathbf{A} is said to be *positive semidefinite*
- In statistics, these classifications are particularly important for variance-covariance matrices, which are always positive semidefinite (and positive definite, if they aren't singular)

Basic linear algebra Random matrices Eigenvalues

Square root of a matrix

- These concepts are important with respect to knowing whether a matrix has a "square root"
- **Definition:** An $n \times n$ matrix **A** is said to have a *square root* if there exists a matrix **B** such that **BB** = **A**.
- Theorem: Let A be a positive semidefinite matrix. Then there exists a unique matrix $A^{1/2}$ such that $A^{1/2}A^{1/2} = A$.

Linear algebra background Vector calculus Taylor series expansions Basic linear algebra Random matrices Eigenvalues

Rank

- We also need to be familiar with the concept of matrix rank (there are many ways of defining rank; all are equivalent)
- **Definition:** The *rank* of a matrix is the dimension of its largest nonsingular submatrix.
- For example, the following 3×3 matrix is singular, but contains a nonsingular 2×2 submatrix, so its rank is 2:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & \mathbf{\beta} \\ \mathbf{\beta} & \mathbf{\beta} \\ 1 & 0 & \mathbf{\beta} \end{bmatrix}$$

• Note that a nonsingular $n \times n$ matrix has rank n, and is said to be full rank

Basic linear algebra Random matrices Eigenvalues

Rank and multiplication

- There are many results and theorems involving rank; we're not going to cover them all, but it is important to know that rank cannot be increased through the process of multiplication
- **Theorem:** For any matrices A and B with appropriate dimensions, $rank(AB) \leq rank(A)$ and $rank(AB) \leq rank(B)$.
- In particular, rank $(\mathbf{A}^{ op}\mathbf{A})$ = rank $(\mathbf{A}\mathbf{A}^{ op})$ = rank (\mathbf{A})

Basic linear algebra Random matrices Eigenvalues

Expectation and variance

- In addition, we need some results on expected values of vectors and functions of vectors
- First of all, we need to define expectation and variance as they pertain to random vectors
- **Definition:** Let $\mathbf{x} = (X_1 \ X_2 \ \cdots \ X_d)^\top$ denote a vector of random variables, then $\mathbb{E}(\mathbf{x}) = (\mathbb{E}X_1 \ \mathbb{E}X_2 \ \cdots \ \mathbb{E}X_d)^\top$. Meanwhile, $\mathbb{V}\mathbf{x}$ is a $d \times d$ matrix:

$$\mathbb{V}\mathbf{x} = \mathbb{E}\{(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\} \text{ with elements}$$
$$(\mathbb{V}\mathbf{x})_{ij} = \mathbb{E}\{(X_i - \mu_i)(X_j - \mu_j)\},\$$

where $\mu_i = \mathbb{E}X_i$. The matrix $\mathbb{V}\mathbf{x}$ is referred to as the *variance-covariance matrix* of \mathbf{x} .

Basic linear algebra Random matrices Eigenvalues

Linear and quadratic forms

• Letting A denote a matrix of constants and x a random vector with mean μ and variance Σ ,

$$\begin{split} \mathbb{E}(\mathbf{A}^{\top}\mathbf{x}) &= \mathbf{A}^{\top}\boldsymbol{\mu} \\ \mathbb{V}(\mathbf{A}^{\top}\mathbf{x}) &= \mathbf{A}^{\top}\boldsymbol{\Sigma}\mathbf{A} \\ \mathbb{E}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) &= \boldsymbol{\mu}^{\top}\mathbf{A}\boldsymbol{\mu} + \mathrm{tr}(\mathbf{A}\boldsymbol{\Sigma}), \end{split}$$

where $\operatorname{tr}(\mathbf{A}) = \sum_i A_{ii}$ is the trace of \mathbf{A}

• Some useful facts about traces:

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$
$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$
$$tr(c\mathbf{A}) = c tr(\mathbf{A})$$
$$tr(\mathbf{A}) = rank(\mathbf{A}) \quad \text{if } \mathbf{AA} = \mathbf{A}$$

Linear algebra background Vector calculus Taylor series expansions Basic linear alg Random matric Eigenvalues

Eigendecompositions

- Finally, we'll also take a moment to introduce some facts about eigenvalues
- The most important thing about eigenvalues is that they allow us to "diagonalize" a matrix: if A is a symmetric $d \times d$ matrix, then it can be factored into:

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}},$$

where Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$ of \mathbf{A} and the columns of \mathbf{Q} are its eigenvectors

- Furthermore, eigenvectors are orthonormal, so we have $\mathbf{Q}^{\top}\mathbf{Q}=\mathbf{Q}\mathbf{Q}^{\top}=\mathbf{I}$

Eigenvalues and "size"

- This is very helpful from a conceptual standpoint, as it allows us to separate the "size" of a matrix (Λ) from its "direction(s)" (\mathbf{Q})
- For example, we have already seen that one measure of the size of a matrix is based on λ_{max} (for a symmetric matrix, its spectral norm is its largest eigenvalue)
- In addition, the trace and determinant, two other ways of quantifying the "size" of a matrix, are simple functions of the eigenvalues:

$$\begin{array}{l} \circ \ \operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i} \\ \circ \ |\mathbf{A}| = \prod_{i} \lambda_{i} \end{array}$$

Linear algebra background Basic linear Vector calculus Random ma Taylor series expansions Eigenvalues

Eigenvalues and inverses

- Once one has obtained the eigendecomposition of **A**, calculating its inverse is straightforward
- If A is not singular, then $A^{-1} = QA^{-1}Q^{\top}$; note that since A is diagonal, its inverse is trivial to calculate
- Even if A is singular, we can obtain something called a "generalized inverse": $\mathbf{A}^- = \mathbf{Q}\mathbf{\Lambda}^-\mathbf{Q}^\top$, where $(\mathbf{\Lambda}^-)_{ii} = \lambda_i^{-1}$ if $\lambda_i \neq 0$ and $(\mathbf{\Lambda}^-)_{ii} = 0$ otherwise
- Many other important properties of matrices can be deduced entirely from their eigenvalues:
 - A is positive definite if and only if $\lambda_i > 0$ for all i
 - $\circ~{\bf A}$ is positive semidefinite if and only if $\lambda_i \geq 0$ for all i
 - If A has rank r, then A has r nonzero eigenvalues and the remaining d r eigenvalues are zero

Extreme values

- Lastly, there is a connection between a matrix's eigenvalues and the extreme values of its quadratic form
- Let the eigenvalues $\lambda_1, \ldots, \lambda_d$ of **A** be ordered from largest to smallest. Over the set of all vectors **x** such that $||\mathbf{x}||_2 = 1$,

$$\max \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \lambda_1$$

and

$$\min \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \lambda_d$$

Real-valued functions: Derivative and gradient

- We're now ready to talk about vector calculus, which is extremely important in statistics
- **Definition:** For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, its *derivative* is the $1 \times d$ row vector

$$\dot{f}(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_d}\right]$$

 In statistics, it is generally more common (but not always the case) to use the gradient (also called "denominator layout" or the "Hessian formulation")

$$\nabla f(\mathbf{x}) = \dot{f}(\mathbf{x})^{\mathsf{T}};$$

i.e., $\nabla f(\mathbf{x})$ is a $d\times 1$ column vector

Vector-valued functions

• **Definition:** For a function $f : \mathbb{R}^d \mapsto \mathbb{R}^k$, its *derivative* is the $k \times d$ matrix with ijth element

$$\dot{\mathbf{f}}(\mathbf{x})_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$$

• Correspondingly, the gradient is a $d \times k$ matrix:

$$abla \mathbf{f}(\mathbf{x}) = \dot{\mathbf{f}}(\mathbf{x})^{\mathsf{T}}$$

 In our course, this will usually come up in the context of taking second derivatives; however, by the symmetry of second derivatives, we have

$$\nabla^2 f(\mathbf{x}) = \ddot{f}(\mathbf{x})$$

Vector calculus identities

Inner product: Quadratic form: Chain rule: Product rule: Inverse function theorem:

 $\begin{aligned} \nabla_{\mathbf{x}} (\mathbf{A}^{\top} \mathbf{x}) &= \mathbf{A} \\ \nabla_{\mathbf{x}} (\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) &= (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x} \\ \nabla_{\mathbf{x}} \mathbf{f} (\mathbf{y}) &= \nabla_{\mathbf{x}} \mathbf{y} \nabla_{\mathbf{y}} \mathbf{f} \\ \nabla (\mathbf{f}^{\top} \mathbf{g}) &= (\nabla \mathbf{f}) \mathbf{g} + (\nabla \mathbf{g}) \mathbf{f} \\ \nabla_{\mathbf{x}} \mathbf{y} &= (\nabla_{\mathbf{y}} \mathbf{x})^{-1} \end{aligned}$

Vector calculus identities (row-vector layout)

Inner product: $D_{\mathbf{x}}(\mathbf{A}\mathbf{x}) = \mathbf{A}$ Quadratic form: $D_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{x}) = \mathbf{x}^{\top}(\mathbf{A} + \mathbf{A}^{\top})$ Chain rule: $D_{\mathbf{x}}\mathbf{f}(\mathbf{y}) = D_{\mathbf{y}}\mathbf{f}D_{\mathbf{x}}\mathbf{y}$ Product rule: $D(\mathbf{f}^{\top}\mathbf{g}) = \mathbf{g}^{\top}\dot{\mathbf{f}} + \mathbf{f}^{\top}\dot{\mathbf{g}}$ Inverse function theorem: $D_{\mathbf{x}}\mathbf{y} = (D_{\mathbf{y}}\mathbf{x})^{-1}$

I don't expect to use these, but for your future reference, here they are

Practice

Exercise: In linear regression, the ridge regression estimator is obtained by minimizing the function

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2,$$

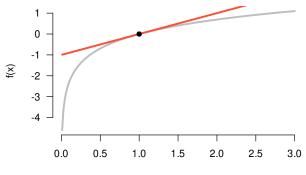
where λ is a prespecified tuning parameter. Show that

$$\widehat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Single variable Multivariate

Taylor series: Introduction

As we will see (many times!), it is useful to be able to approximate a complicated function with a simple polynomial (this is the idea behind Taylor series approximation):



Taylor series: Introduction (cont'd)

- It is difficult to overstate the importance of Taylor series expansions to statistical theory, and for that reason we are now going to cover them fairly extensively
- In particular, Taylor's theorem comes in a number of versions, and it is worth knowing several of them, since they come up in statistics quite often
- Furthermore, students often have not seen the multivariate versions of these expansions

Single variable Multivariate

Taylor's theorem

• Theorem (Taylor): Suppose n is a positive integer and $f : \mathbb{R} \mapsto \mathbb{R}$ is n times differentiable at a point x_0 . Then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x, x_0),$$

where the remainder R_n satisfies

$$R_n(x,x_0) = o(|x-x_0|^n) \text{as } x \to x_0$$

- If $f^{(n+1)}(x_0)$ exists, you could also say that R_n is $O(|x-x_0|^{n+1})$
- This form of the remainder is sometimes called the Peano form

Single variable Multivariate

Taylor's theorem: Lagrange form

Theorem (Taylor): Suppose f : ℝ → ℝ is n + 1 times differentiable on an open interval containing x₀. Then for any point x in that interval, there exists x̄ ∈ (x, x₀):

$$R_n(x, x_0) = \frac{f^{(n+1)}(\bar{x})}{(n+1)!} (x - x_0)^{n+1}$$

• This is also known as the *mean-value form*, as the mean value theorem is the central idea in proving the result

Single variable Multivariate

Comparing the two forms

Comparing the Basic and Lagrange forms for a second-order expansion,

$$f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o(|x - x_0|^2)$$

$$f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\bar{x})(x - x_0)^2$$

• We can see that in the second case, we have a simpler expression, but to obtain it, we require f'' to exist along the entire interval from x to x_0 , not just at the point x_0

Example: Absolute value

- For example, consider approximating the function $f(\boldsymbol{x}) = |\boldsymbol{x}|$ at $x_0 = -0.1$
- Note that f' exists at x_0 , but not at 0
- The basic form of Taylor's theorem says that if we get close enough to x_0 , the approximation f(-0.1) + f'(-0.1)(x+0.1) becomes very accurate indeed, the remainder is exactly zero for any x within 0.1 of x_0
- However, suppose x = 0.2; since f is not differentiable at zero, we are not guaranteed the existence of a point \bar{x} such that

$$f(0.2) = f(-0.1) + 0.3f'(\bar{x});$$

and indeed in this case no such point exists

Single variable Multivariate

Lagrange bound

- One reason why the Lagrange form is more powerful is that it allows us to establish error bounds to know exactly how close x must be to x_0 in order to ensure that the approximation error is less than ϵ
- In particular, if there exists an M such that $\left|f^{(n+1)}(\cdot)\right|\leq M$ over the interval $(x,x_0),$ then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

Single variable Multivariate

Multivariable forms of Taylor's theorem

- We now turn our attention to the multivariate case
- For the sake of clarity, I'll present the first- and second-order expansions for each of the previous forms, rather than abstract formulae involving $f^{\left(n\right)}$
- Lastly, I'll provide a form that goes out to third order, although higher orders are less convenient as they can't be represented compactly using vectors and matrices
- Note that these forms are only covering the case of scalar-valued functions f : ℝ^d → ℝ; we will need results for the vector-valued case f : ℝ^d → ℝ^k as well, but we will go over that in a later lecture

Single variable Multivariate

Taylor's theorem

Theorem (Taylor): Suppose f : ℝ^d → ℝ is differentiable at a point x₀. Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|)$$

• **Theorem (Taylor):** Suppose *f* : ℝ^d → ℝ is twice differentiable at a point **x**₀. Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|^2)$$

Single variable Multivariate

Taylor's theorem: Lagrange form

• Theorem (Taylor): Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\bar{\mathbf{x}})^{\top} (\mathbf{x} - \mathbf{x}_0)$$

• Theorem (Taylor): Suppose $f : \mathbb{R}^d \mapsto \mathbb{R}$ is twice differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$\begin{aligned} f(\mathbf{x}) &= f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \\ & \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\bar{\mathbf{x}}) (\mathbf{x} - \mathbf{x}_0) \end{aligned}$$

• " $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 " means that there exists $w \in [0, 1]$ such that $\bar{\mathbf{x}} = w\mathbf{x} + (1 - w)\mathbf{x}_0$

Single variable Multivariate

Taylor's theorem: Third order

Theorem (Taylor): Suppose $f : \mathbb{R}^d \mapsto \mathbb{R}$ is three times differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$\begin{split} f(\mathbf{x}) &= f(\mathbf{x}_0) + \sum_{j=1}^d \frac{\partial f(\mathbf{x}_0)}{\partial x_j} (x_j - x_{0j}) \\ &+ \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_j \partial x_k} (x_j - x_{0j}) (x_k - x_{0k}) \\ &+ \frac{1}{6} \sum_{j=1}^d \sum_{k=1}^d \sum_{\ell=1}^d \frac{\partial^3 f(\bar{\mathbf{x}})}{\partial x_j \partial x_k \partial x_\ell} (x_j - x_{0j}) (x_k - x_{0k}) (x_\ell - x_{0\ell}), \end{split}$$

where $\partial f(\mathbf{x}_0)/\partial x_j$ is shorthand for $\partial f(\mathbf{x})/\partial x_j$ evaluated at \mathbf{x}_0