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Introduction

• In the previous lecture, we introduced (a) the idea of
convergence and (b) the concept of a norm to measure the
distance between two vectors

• Today, we will combine these two ideas to discuss the
convergence of vectors as well as the related concepts of
continuity and uniform convergence

• In addition, we will go over the basics of measure theory – you
don’t need to be an expert in this topic as a statistician, but a
little goes a long way
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Neighborhoods

• The set of vectors that is “close” to a vector x is known as its
“neighborhood”

• Definition: The neighborhood of a point p ∈ Rd, denoted
Nδ(p), is the set {x : ∥x − p∥ < δ}.

• This will come up quite often in this course
◦ For example, we will often need to make assumptions about

the likelihood function L(θ)
◦ However, we don’t necessarily need these assumptions to hold

everywhere – it’s enough that they hold in a neighborhood of
θ∗, the true value of the parameter
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Convergence

• There are two potential ways we could extend this idea to the
multivariate case

• Definition: We say that the vector xn converges to x,
denoted xn → x, if each element of xn converges to the
corresponding element of x.

• Alternatively, we can use norms to construct a more direct
definition

• Definition: A sequence xn is said to converge to x, which we
denote xn → x, if for every ϵ > 0, there is a number N such
that n > N implies that ∥xn − x∥ < ϵ.

• We’ll establish in a moment that these two definitions are
equivalent
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Continuity

• It’s fairly obvious that, say, xn + yn → x + y, but what about
more complicated functions? Does √

xn →
√

x? Does
f(xn) → f(x) for all functions?

• The answer to the second question is no: not all functions
possess this property at all points

• This is obviously a very useful property though, so functions
that possess it are given a specific name: continuous functions
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Continuity (cont’d)

• Definition: A function f : Rd → R is said to be continuous
at a point p if for all ϵ > 0, there exists δ > 0:

∥x − p∥ < δ =⇒ |f(x) − f(p)| < ϵ

• Note that by the equivalence of norms, we can just say that a
function is continuous – it can’t be, say, continuous with
respect to ∥·∥2 and not continuous with respect to ∥·∥1

• Theorem: Suppose xn → x0 and f : Rd → R is continuous
at x0. Then f(xn) → f(x0).
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Continuity and convergence

• The norm itself is a continuous function
• Theorem: Let f(x) = ∥x∥, where ∥·∥ is any norm. Then

f(x) is continuous.
• One consequence of this result is that element-wise

convergence is equivalent to convergence in norm
• Theorem: xn → x element-wise if and only if ∥xn − x∥ → 0.
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Convergence of functions

• One final important concept with respect to convergence is
the convergence of functions

• Definition: Suppose f1, f2, . . . is a sequence of functions and
that for all x, the sequence fn(x) converges. We can then
define the limit function f by

f(x) = lim
n→∞

fn(x)

• Sequences of functions come up constantly in statistics, the
most relevant example being the likelihood function
L(θ|xn) = Ln(θ)
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Combining the two types of convergence

• Furthermore, we are often interested in combining
convergence of the function with convergence of the argument

• For example, does fn(θ̂n) → f(θ) as θ̂n → θ?
• This raises a number of additional issues we have not

encountered before
• We’ll return to the probabilistic question later in the course;

for now, let’s discuss the problem in deterministic terms: does
fn(xn) → f(x0) as xn → x0?
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Counterexample

• Unfortunately, the answer is no – in general, this is not true
• For example:

fn(x) =
{

xn x ∈ [0, 1]
1 x ∈ (1, ∞)

• We have:

lim
x→1−

lim
n→∞

fn(x) = 0 ̸= f(1)
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Illustration
The underlying issue is that fn doesn’t really converge to f in the
sense of always lying within ±ϵ of it:
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Uniform convergence

• The relationship between fn and f is one of pointwise
convergence; we need something stronger

• Definition: A sequence of functions f1, f2, . . . : Rd → R
converges uniformly on a set E to a function f if for every
ϵ > 0 there exists N such that n > N implies

|fn(x) − f(x)| < ϵ

for all x ∈ E

• Corollary: fn → f uniformly on E if and only if

sup
x∈E

|fn(x) − f(x)| → 0.
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Supremum and infimum

• In case you haven’t seen it before, the sup notation on the
previous slide stands for supremum, or least upper bound

• As the name implies, α is a least upper bound of the set E if
(i) α is an upper bound of E and (ii) if γ < α, then γ is not
an upper bound of E

• Similarly, the greatest lower bound of a set is known as the
infimum, denoted α = inf E

• The concept is similar to the maximum/minimum of E, but if
E is an infinite set, it doesn’t necessarily have a
largest/smallest element, which is why we need sup/inf
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Supremum and infimum: Example

• For example, consider the set {x2 : x ∈ (0, 1)}
• Its least upper bound (sup) is 1, but 1 is not an element of

the set
• To prove that 1 is the least upper bound, note that (a) 1 is an

upper bound and (b) if I choose any number b < 1, then b is
not an upper bound; this is standard technique

• Similarly, the greatest lower bound (inf) of the set is 0, but 0
is not an element of the set

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 14 / 40



Convergence and continuity
O notation

Integration and measure

Convergence
Continuity
Uniform convergence

Why uniform convergence is useful

• Uniform convergence is useful because it allows us to reach
the kind of conclusion we originally sought

• Theorem: Suppose fn → f uniformly, with fn continuous for
all n. Then fn(x) → f(x0) as x → x0.

• Note that this argument does not work without uniform
convergence
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Preview

• Later on in the course, this idea will be quite relevant to
likelihood theory: we will often require that In(θ̂n) is close to
I(θ∗)

• A common way of ensuring uniform convergence is by
bounding the derivative; here, this would mean requiring that∣∣∣∣ ∂

∂θ
In(θ)

∣∣∣∣ ≤ M

for all n and for all θ

• Note that this must be a uniform bound in the sense that the
bound M does not depend on θ or n
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Extensions

• The theorem we just proved can actually be made somewhat
stronger:

• Theorem: Suppose fn → f uniformly on E and that
limx→x0 fn(x) exists for all n. Then for any limit point x0 of
E,

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x).

• Corollary: If {fn} is a sequence of continuous functions on E
and if fn → f uniformly on E, then f is continuous on E.
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Related concepts

• There are number of related concepts similar to uniform
convergence

• Definition: A function f : Rd → R is called uniformly
continuous if for all ϵ > 0, there exists δ > 0 such that for all
x, y ∈ Rd : ∥x − y∥ < δ, we have |f(x) − f(y)| < ϵ.

• For example, f(x) = x2 is uniformly continuous over [0, 1] but
not over [0, ∞)

• Definition: A sequence X1, X2, . . . of random variables is
said to be uniformly bounded if there exists M such that
|Xn| < M for all Xn.
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o-notation: Motivation

• When dealing with convergence, it is often convenient to
replace unwieldy expressions with compact notation

• For example, if we encountered the mathematical expression

x2 + a − a,

we would obviously want to replace it with x2 since a − a = 0
• However, what if we encounter something like

x2 + 5θ√
n

− 3θ

n + 5?

• We can no longer just replace this with x2
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o-notation: Motivation (cont’d)

• However, as n gets larger, the expression gets closer and
closer to x2

• It would be convenient to have a shorthand notation for this,
something like x2 + on, where on represents some quantity
that becomes negligible as n becomes large

• This is the basic idea behind o-notation, and its simplifying
powers become more apparent as the mathematical expression
we are dealing with becomes more complicated:

x2 + 5θ√
n

− 3θ
n+5

(n2 + 5n − 2)/(n2 − 3n + 1) +
exp{−1

2∥x − µ∥2}
2
√

nθ
∫ ∞

0 g(s)ds
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o-notation

• This is where o-notation comes in: it provides a formal way of
handling terms that effectively “cancel out” as we take limits

• Definition: A sequence of numbers xn is said to be o(1) if it
converges to zero. Likewise, xn is said to be o(rn) if

xn

rn
→ 0

as n → ∞.
• When the rate is constant, o notation is pretty straightforward:

x2 + 5θ√
n

− 3θ

n + 5 = x2 + o(1)
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o-notation remarks

• When the rate is not constant, expressions are a bit harder to
think about – it helps to go over some cases:

• For example:
◦ xn → ∞, but rn → ∞ even faster:

n = o(n2)

◦ rn → 0, but xn → 0 even faster:

1
n2 = o(1/n)
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O-notation

• A very useful companion of o-notation is O-notation, which
denotes whether or not a term remains bounded as n → ∞

• Definition: A sequence of numbers xn is said to be O(1) if
there exist M and N such that

|xn| < M

for all n > N . Likewise, xn is said to be O(rn) if there exist
M and N such that for all n > N ,∣∣∣∣xn

rn

∣∣∣∣ < M.
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O-notation remarks

• For example,

exp{−1
2∥x − µ∥2}

2
√

nθ
∫ ∞

0 g(s)ds
= O(n−1/2)

• Note that xn = O(1) does not necessarily mean that xn is
bounded, just that it is eventually bounded

• Note also that just because a term is O(1), this does not
necessarily mean that it has a limit; for example,

sin
(

nπ

2

)
= O(1),

even though the sequence does not converge

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 24 / 40



Convergence and continuity
O notation

Integration and measure

Definitions
Rules of O notation

O-notation remarks (cont’d)

• You may encounter the ambiguous phrase “xn is of order rn”
• The author may mean that xn = O(rn)
• However, it might also mean something stronger: that there

exist positive constants m and M such that

m ≤
∣∣∣∣xn

rn

∣∣∣∣ ≤ M

for large enough n; i.e., the ratio is bounded above but also
bounded below

• In other words, xn = O(rn) but in addition xn ̸= o(rn); some
authors use the notation xn ≍ rn to denote this situation

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 25 / 40



Convergence and continuity
O notation

Integration and measure

Definitions
Rules of O notation

Informative-ness of o and O notation

• There are typically many ways of writing an expression using O
notation, although not all of them will be equally informative

• For example, if xn = 1
n , then all of the following are true:

xn = o(1)
xn = O(1) (least informative)
xn = O( 1

n) (more informative)
xn ≍ 1

n (most informative)
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Algebra of O, o notation

O, o-notation are useful in combination because simple rules
govern how they interact with each other
Theorem: For a ≤ b:

O(1) + O(1) = O(1) O{O(1)} = O(1)
o(1) + o(1) = o(1) o{O(1)} = o(1)

o(1) + O(1) = O(1) o(rn) = rno(1)
O(1)O(1) = O(1) O(rn) = rnO(1)
O(1)o(1) = o(1) O(na) + O(nb) = O(nb)

{1 + o(1)}−1 = O(1) o(na) + o(nb) = o(nb)
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Remarks

• O, o “equations” are meant to be read left-to-right; for
example, O(

√
n) = O(n) is a valid statement, but

O(n) = O(
√

n) is not
• Exercise: Determine the order of

n−2
{

(−1)n n
√

2 + n(1 + 1
n)n

}
.

• As we will see in a week or two, there are stochastic
equivalents of these concepts, involving convergence in
probability and being bounded in probability

• As such, we won’t do a great deal with O, o-notation right
now, but will use the stochastic equivalents extensively

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 28 / 40



Convergence and continuity
O notation

Integration and measure

Riemann-Stieltjes integration
Lebesgue decomposition

Introduction

• We now turn our attention to integration – I assume that you
know how to take integrals, but perhaps not their underlying
theoretical development, and not with the Riemann-Stieltjes
form of integrals

• This form is useful to be aware of, as it has a deep connection
with probability and measure theory and allows for a nice
unification of continuous and discrete probability theory

• This is not a measure theory-based course, but it is worth
knowing some basic results that will help you read papers that
use measure theoretical language
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Introduction to Riemann-Stieltjes integration

• Probability and expectation are intimately connected with
integration

• The basic forms of integration that you learn as an
undergraduate are known as Riemann integrals; a more
rigorous form is the Lebesgue integral, but that rests on quite
a bit of measure theory

• The Riemann-Stieltjes integral is a useful bridge between the
two, and particularly useful in statistics
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Partitions and lower/upper sums
• Definition: A partition P of the interval [a, b] is a finite set of

points x0, x1, . . . , xn such that

a = x0 < x1 < · · · < xn = b.

• Let µ be a bounded, nondecreasing function on [a, b], and let

∆µi = µ(xi) − µ(xi−1);

note that ∆µi ≥ 0
• Finally, for any function g define the lower and upper sums

L(P, g, µ) =
n∑

i=1
mi∆µi mi = inf

[xi−1,xi]
g

U(P, g, µ) =
n∑

i=1
Mi∆µi Mi = sup

[xi−1,xi]
g
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Refinements

• Definition: A partition P ∗ is a refinement of P if P ∗ ⊃ P
(every point of P is a point of P ∗). Given partitions P1 and
P2, we say that P ∗ is their common refinement if
P ∗ = P1 ∪ P2.

• Theorem: If P ∗ is a refinement of P , then

L(P, g, µ) ≤ L(P ∗, g, µ)

and

U(P ∗, g, µ) ≤ U(P, g, µ)

• Theorem: L(P1, g, µ) ≤ U(P2, g, µ)
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The Riemann-Stieltjes integral
Definition: If the following two quantities are equal:

inf
P

U(P, g, µ)

sup
P

L(P, g, µ),

then g is said to be integrable with respect to µ over [a, b], and we
denote their common value ∫ b

a
gdµ

or sometimes ∫ b

a
g(x)dµ(x)
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Dominated convergence theorem

• One of the most important results in measure theory is the
dominated convergence theorem

• Theorem (Dominated convergence): Let fn be a sequence
of integrable functions such that fn → f . If there exists an
integrable function g such that |fn(x)| ≤ g(x) for all n and all
x, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

• The theorem can be restated in terms of expected values,
which we will go over (and use) in a later lecture
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Implications for probability

• The application to probability is clear: any CDF can play the
role of µ (CDFs are bounded and nondecreasing), so expected
values can be written

Eg(X) =
∫

g(x) dF (x)

• Why is this more appealing than the usual Riemann integral?
• The main reason is that the above statement is valid

regardless of whether X has a continuous or discrete
distribution (or some combination of the two) – we require
only that F is nondecreasing, not that it is continuous
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Continuous and discrete measures

• Suppose F is the CDF of a discrete random variable that
places point mass pi on support point si; then∫

g dF =
∞∑

i=1
g(si)pi

• Suppose F is the CDF of a continuous random variable with
corresponding density f(x); then assuming g(X) is integrable
with respect to F ,∫

g dF =
∫

g(x)f(x) dx

• In other words, the Riemann-Stieltjes integral reduces to
familiar forms in both continuous and discrete cases
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Example

• However, the Riemann-Stieltjes integral also works in mixed
cases

• Exercise: Suppose X has a distribution such that
P (X = 0) = 1/3, but if X ̸= 0, then it follows an exponential
distribution with λ = 2. Suppose g(x) = x2; what is

∫
g dF?
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Decomposing random variables

• Now, you might be wondering: can we always do this?
• Can we always just separate out any random variable into its

continuous and discrete components and handle them
separately like this?

• The answer, unfortunately, is no
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Lebesgue decomposition theorem

• Theorem (Lebesgue decomposition): Any probability
distribution F can uniquely be decomposed as

F = FD + FAC + FSC,

where
◦ FD is the discrete component (i.e., probability is given by a

sum of point masses)
◦ FAC is the absolutely continuous component (i.e., probability is

given by an integral with respect to a density function)
◦ FSC is the singular continuous component (i.e., it’s weird)

• The theorem is typically stated in terms of measures, but I’m
using (sub)distribution functions here for the sake of
familiarity

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 39 / 40



Convergence and continuity
O notation

Integration and measure

Riemann-Stieltjes integration
Lebesgue decomposition

Important takeaways

• Obviously, we’re skipping the technical details of measure
theory as well as the proof of this theorem, but you don’t need
a technical understanding to see why it’s important

• It’s not the case that all distributions can be decomposed into
discrete and “continuous” components – there is a third
possibility: singular

• However, if we add the restriction that we are dealing with
non-singular (or regular) distributions, then yes, all
distributions can be decomposed into the familiar continuous
and discrete cases

• To be technically accurate, one might wish to clarify
“absolutely continuous” instead of continuous when you’re
referring to a distribution with a density (in non-technical
contexts, this is implicit)
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