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Introduction

• Before we get to likelihood theory, we are going to spend the
first part of this course reviewing/extending/deepening our
knowledge of mathematical and statistical tools

• In particular, lower-level analysis and mathematical statistics
courses often focus on single-variable results

• In practice, however, statistics is almost always a multivariate
pursuit

• Thus, one of the things we will focus on in this review is
covering results you may have seen for single variables in
terms of vectors
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Asymptotic theory

• A large amount (but not all) of statistical theory is based on
asymptotic, or large sample, arguments

• Exact theoretical results are often very complicated and
difficult to obtain, but we can typically simplify the problem
greatly by considering what happens as n → ∞

• A core idea here from analysis is that of a convergent
sequence: xn converges to x if, as n gets larger, xn gets
closer and closer to x

• We’ll discuss this more next week, but first, we need to take a
step back and define what it means for xn to be “close” to x

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 3 / 30



Vector norms and inequalities
Probability inequalities

Proofs

Definitions
Matrix norms
Inequalities

Norms: Introduction

• Throughout this course, we need to be able to measure the
distance between two vectors, or equivalently, the size of a
vector; such a measurement is called a norm

• This is straightforward for scalars: the distance from a to b is
|a − b|

• Vectors are more complicated; as we will see, there are many
ways of measuring the size of a vector

• In order to be a meaningful measure of size, however, there
are certain conditions any norm must satisfy
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Norm: Definition

• Definition: A norm is a function ∥·∥ : Rd → R such that for
all x, y ∈ Rd,

◦ ∥x∥ ≥ 0, with ∥x∥ = 0 iff x = 0 (positivity)
◦ ∥ax∥ = |a| ∥x∥ for any a ∈ R (homogeneity)
◦ ∥x + y∥ ≤ ∥x∥ + ∥y∥ (triangle inequality)

• The triangle inequality is also sometimes expressed as

∥x − z∥ ≤ ∥x − y∥ + ∥y − z∥,

or

d(x, z) ≤ d(x, y) + d(y, z),

where d(x, y) quantifies the distance between x and y
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Reverse triangle inequality

• A related inequality:

• Theorem (reverse triangle inequality): For any x, y ∈ Rd,

∥x∥ − ∥y∥ ≤ ∥x − y∥

• Corollary: For any x, y ∈ Rd,

∥x∥ − ∥y∥ ≤ ∥x + y∥
∥y∥ − ∥x∥ ≤ ∥x + y∥
∥y∥ − ∥x∥ ≤ ∥x − y∥
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Examples of norms

• By far the most common norm is the Euclidean (L2) norm:

∥x∥2 =
√∑

i
x2

i

• However, there are many other norms; for example, the
Manhattan (L1) norm:

∥x∥1 =
∑

i
|xi|

• Both Euclidean and Manhattan norms are members of the Lp

family of norms: for p ≥ 1,

∥x∥p =
(∑

i
|xi|p

)1/p
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Examples of norms (cont’d)

• Another norm worth knowing about is the L∞ norm:

∥x∥∞ = max
i

|xi| ,

which is the limit of the family of Lp norms as p → ∞
• One last “norm” worth mentioning is the L0 norm:

∥x∥0 =
∑

i
1{xi ̸= 0};

be careful, however: this is not a proper norm! (why not?)
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Inner products

• The Euclidean norm can also be thought of in terms of
something called an inner product:

x⊤y =
∑

i

xiyi

• Inner products come up all the time in statistics and
mathematics, and can also be written using angle bracket
notation: ⟨a, b⟩ = a⊤b

• Two critical things to remember:
◦ The inner product x⊤y takes two vectors and returns a scalar
◦ Writing x2 is meaningless – never do this – because there are

two ways to multiply a vector x with itself
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Outer products

• When we change which vector is transposed, instead of
getting something simpler (a scalar), we get something more
complicated (a matrix)

• The operation xy⊤ results in an n × n matrix where the
element in row i, column j is xiyj

• This is known as outer product, and can also be written x ⊗ y
• We will see inner and outer products all the time in this

course, so this needs to be something you understand instantly
in order to read equations and formulas that will appear (we
will talk more about matrix algebra in a future lecture)
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Matrix norms

• There are also matrix norms, although we will not work with
these as often

• In addition to the three requirements listed earlier, matrix
norms must also satisfy a requirement of submultiplicativity:

∥AB∥ ≤ ∥A∥∥B∥;

unlike the other requirements, this only applies to n × n
matrices

• The simplest matrix norm is the Frobenius norm

∥A∥F =
√∑

i,j
a2

ij
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Spectral norm

• Another common matrix norm is the spectral norm:

∥A∥2 =
√

λmax,

where λmax is the largest eigenvalue of A⊤A
• There are many other matrix norms
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Cauchy-Schwarz

• There are several important inequalities involving norms that
you should be aware of; the most important is the
Cauchy-Schwarz inequality, arguably the most useful
inequality in all of mathematics

• Theorem (Cauchy-Schwarz): For x, y ∈ Rd,

x⊤y ≤ ∥x∥2∥y∥2,

where equality holds only if x = ay for some scalar a

• Note: the above is the Cauchy-Schwarz inequality, but in
statistics, its probabilistic version goes by the same name:

E |XY | ≤
√
E(X2)E(Y 2)

for random variables X and Y , with equality iff X = aY
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Hölder’s inequality

• The Cauchy-Schwarz inequality is actually a special case of
Hölder’s inequality:

• Theorem (Hölder): For 1/p + 1/q = 1 and x, y ∈ Rd,

x⊤y ≤ ∥x∥p∥y∥q,

again with exact equality iff x = ay for some scalar a (unless
p or q is exactly 1)

• Probabilistic analogue:

E |XY | ≤ p

√
E |X|p q

√
E |Y |q
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Jensen’s inequality

• Another extremely important inequality is Jensen’s inequality;
surely you’ve seen it before, but perhaps not in vector form

• Theorem (Jensen): For a, x ∈ Rd with ai > 0 for all i, if g
is a convex function, then

g

(∑
i aixi∑

i ai

)
≤

∑
i aig(xi)∑

i ai

• Probabilistic analog:

g(EX) ≤ Eg(X)

• The inequalities are reversed if g is concave
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Relationships between norms

• Getting back to the different norms, there are many important
relationships between norms that are often useful to know

• Theorem: For all x ∈ Rd,

∥x∥2 ≤ ∥x∥1 ≤
√

d∥x∥2

• Obvious, but useful:

∥x∥∞ ≤ ∥x∥1 ≤ d∥x∥∞

∥x∥∞ ≤ ∥x∥2 ≤
√

d∥x∥∞
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Equivalence of norms

• The relationships on the previous slide suggest the following
statement, which is in fact always true: for any two norms a
and b, there exist constants c1 and c2 such that

∥x∥a ≤ c1∥x∥b ≤ c2∥x∥a

• This result is known as the equivalence of norms and means
that we can often generalize results for any one norm to all
norms

• For example, we will often encounter results that look like:

A = B + ∥r∥

and show that ∥r∥ → 0, so A → B
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Equivalence of norms (cont’d)

• By the equivalence of norms, if, say, ∥r∥1 → 0, then ∥r∥2 → 0
and so on for all norms (except not the L0 “norm”!)

• In this course, we will almost always be working with the
Euclidean norm, so much so that I will often write ∥x∥ to
mean the Euclidean norm and not even bother with the
subscript

• That said, it is important to note that with these
relationships, we can always derive corollaries that extend
results to other norms
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Equivalence of matrix norms

• Like vector norms, matrix norms are also equivalent
• For example,

∥A∥2 ≤ ∥A∥F ≤
√

r∥A∥2,

where r is the rank of A
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• Many of the inequalities we will work with in this class involve
random variables, so it is worth covering a simple but
important point that doesn’t seem to have a name (that I
know of) but I will call the principle of inclusion

• Theorem (Inclusion): Suppose a < b and Y is a random
variable. Then

P{Y < a} ≤ P{Y < b}

• Corollary: Suppose a < b and Y is a random variable. Then

P{b < Y } ≤ P{a < Y }
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• In words, if the “big side” gets bigger or the “small side” gets
smaller, the probability goes up

• For example, combining this with the triangle inequality:

P{X < |a + b|} ≤ P{X < |a| + |b|}

(the “big side” got bigger, so the probability went up)
• This is not hard to understand, but also a common source of

mistakes, because it’s easy to wind up with the inequality
going the wrong way:

P{|a + b| < X} ≤ P{|a| + |b| < X}
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Introduction

• We will spend a lot of time in this course (both in-class and
on homework/exams) proving things

• It is useful to discuss best practices for structuring proofs up
front, especially if you have never taken a course on proofs in
the past

• We will start with the easiest (most straightforward) type of
proof, the proof by calculation
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Introduction

• Let’s start with an extremely simple proof: Suppose that
2x + 3 = x; prove that x = −3

• One way to approach this problem would be as follows:

2x + 3 = x

2x + 3 − x = x − x

x + 3 = 0
x = −3

• This approach may be familiar, and is adequate for a simple
problem like this, but isn’t ideal – the approach is actually
quite limiting and does not extend well to more complicated
types of proofs
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Linear/chain proofs

• Instead, I would encourage you to get in the habit of writing
proofs that form a linear chain of steps from beginning to end:

x = x + (x − x) + (3 − 3)
= (2x + 3) − x − 3
= x − x − 3
= −3

• This may be less familiar, but
◦ The steps here are much more representative of what we will

be doing in future lectures
◦ It extends to more complex proof structures
◦ It is easier to check the logic and ensure that the result holds
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Proofs involving inequalities

• For example, suppose we know that x + 3 ≥ 2 and
y + 2x < 3; prove that y < 5

• Forming a linear chain:

y = y + 2x − 2x

< 3 − 2x

= 9 − 2(x + 3)
≤ 9 − 2 · 2
= 5

• Is it possible to prove this in other ways? Of course, but here
we have a clear chain that allows us to immediately see how
the inequalities relate to one another
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More complex structures

• In this course, proofs will obviously be more complicated than
this:

◦ Multiple steps (as opposed to a single chain of
equations/inequalities)

◦ More abstract results (there exists a number such that. . . or
this is true for all such. . . as opposed to a result about a
specific instance)

• However, equation/inequality chains are often central
components of these more complex proofs
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Sequential order is absolutely critical

Furthermore, all proofs, no matter how complicated, must follow a
sequential chain of logic in which each statement is unquestionably
true based on what has come before

• Never refer to a quantity or a variable that has not yet been
defined

• Never write something down that may or may not be true
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Contradiction

• Arguably, the one exception to this rule is proof by
contradiction: if we suppose that something is true and show
that it leads to an impossibility, therefore the original premise
must be false

• For example, show that there is no integer k such that k2 = 2
• It is critical, however, that the scope is clearly defined here:

within the contradiction block, the supposition is
unquestionably true, and outside the contradiction block, the
supposition is unquestionably false – it is never “maybe true?”

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 28 / 30



Vector norms and inequalities
Probability inequalities

Proofs

Proofs by calculation
Proofs with structure

Convergence

• To get a sense of what these more complex structures look
like, let’s consider the definition of convergence, which we will
discuss further next week

• Definition: A sequence of scalar values xn is said to converge
to x, which we denote xn → x, if for every ϵ > 0, there is a
number N such that n > N implies that |xn − x| < ϵ

• Pay very close attention to the wording here, because we are
not saying that there is a single N that always works
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Convergence (cont’d)

• Instead, we are saying that if you:
(1) pick an ϵ, then
(2) you can always find an N that works, where N is allowed to

depend on ϵ (and typically, must)
• For example, show that 1/n converges to 0
• These ideas of for every (∀) and there exists (∃) are

fundamental to mathematical analysis and statistical theory,
so make sure you know exactly what they mean and how they
are different from each other
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