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Introduction

• This course is about developing a theoretical understanding of
likelihood, the central concept in statistical modeling and
inference

• Likelihood offers a systematic way of measuring agreement
between unknown parameters and observable data; in so
doing, it provides a unifying principle that all statisticians can
agree is reasonable (which is not to say that it doesn’t have
any problems)

• This provides two enormous benefits in statistics:
◦ A universal baseline of comparison for methods and estimators
◦ A coherent and versatile method of summarizing and

combining evidence of all sources without relying on arbitrary,
ad hoc decisions
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Likelihood: Definition

• Let X denote observable data, and suppose we have a
probability model p that relates potential values of X to an
unknown parameter θ

• Definition: Given observed data X = x, the likelihood
function for θ is defined as

L(θ|x) = p(x|θ),

although I will often just write L(θ)
• Note that this is a function of θ, not x; once the data has

been observed, x is fixed
• Also, note that a likelihood function is not a probability

distribution – for example, it does not integrate to 1
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Likelihood for continuous distributions

• The definition on the previous slide works regardless of
whether p is a mass function, a density function, or even a
mixture of the two

• Is it reasonable to mix probabilities and densities like this?
• Suppose we replace the density with the probability
P{X ∈ (x − ϵ/2, x + ϵ/2)}; then for small ϵ we have

L(θ) =
∫ x+ϵ/2

x−ϵ/2
p(u|θ)du

≈ ϵp(x|θ)

• Thus, at least in the limit ϵ → 0, the value of ϵ is just an
arbitrary multiplicative constant and may be ignored; we will
come back to this point shortly
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Illustration: Binomial success
To get a sense of how likelihood works, let’s consider a simple,
familiar situation in which a binary trial is independently repeated
n = 20 times with x = 6 successes:
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Remarks

• The likelihood is therefore

L(θ) ∝ θx(1 − θ)n−x

up to a constant that does not involve θ

• Likelihoods provide only a relative measure of preference for
one parameter value vs. another

• In other words, the actual value of L(θ) is not meaningful, but
the relative quantity L(θ1)/L(θ2) is meaningful

• For this reason, whenever I provide likelihood plots in this
course, I will standardize L to have a maximum of 1

• Also, I will use the term “equivalent” to describe two
likelihoods that are proportional to each other (i.e., for any
meaningful purpose, they are identical)
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Another example: Mark-recapture

• Let’s consider a less-familiar situation: trying to estimate the
abundance of an animal species in a certain area

• A common way of doing this is via mark-recapture
experiments

• Suppose a department of natural resources marks 30 mountain
lions in an area, releases them into the wild, then recaptures
45 of them, of which 14 had been tagged previously

• Assuming the mountain lions are caught at random, the
likelihood is given by the hypergeometric distribution:

L(θ) =
(30

14
)( θ−30

45−14
)( θ

45
)
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Illustration: Mark-recapture
This leads to a relatively similar picture as far as the story
likelihood tells us about which unknown values are consistent with
the data and which are not:
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The appeal of likelihood

These are just two examples of the appeal of likelihood: a universal
method for obtaining:

• Point estimates (maximum likelihood)
◦ Binomial trials: θ̂ = 0.30
◦ Mark-recapture: θ̂ = 96

• Intervals
◦ Binomial trials: (0.13, 0.51)
◦ Mark-recapture: (75, 141)
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Likelihood ratios
• The intervals on the previous slide are based on{

θ : L(θ)
L(θ̂)

> c

}
• In this case, I chose c = 0.15:
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• The obvious question, though, is: how should we choose c
and what does it mean?
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Bayes’ rule
• To answer this question, we have to connect likelihood to

probability, and there are two schools of thought for doing so:
Bayesian and frequentist

• Let us consider the Bayesian framework first, and treat θ as a
random variable:

p(θ|x) = p(θ)p(x|θ)
p(x)

∝ p(θ)L(θ|x),

where
◦ p(θ) is the prior: Our beliefs about the plausible values of our

parameter before seeing any data
◦ p(θ|x) is the posterior: Our updated beliefs about the plausible

values for our parameter after seeing the data
◦ p(x) is a normalizing constant typically not of interest
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Bayesian approach: Appealing aspects

• Indeed, if we consider θ a random variable, then Bayes’ rule is
the only mathematically correct way of relating likelihood and
probability

• This is one very appealing aspect of the Bayesian approach:
there is one universal, coherent approach to all statistical
inference (decide on a prior, a model/likelihood, then use
Bayes’ rule to obtain a posterior)

• Another very appealing property is that we can make direct
statements about θ based on what we have seen: assuming a
uniform prior on θ in our binomial example, we can say that
there is a 95% probability that θ is between 0.136 and 0.509
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Bayesian approach: Concerns

The Bayesian approach is an enormously useful and successful
approach for quantifying the uncertainty associated with likelihood;
nevertheless, two meaningful concerns can be raised:

• Choosing a prior can be hard: A uniform prior might be
reasonable for our binomial example, but what about the
mark-recapture example? A uniform prior is convenient, but
absurd, as it would imply a belief that there may be billions,
or even trillions, of mountain lions in the area.

• What do we do with subjective belief? The Bayesian
approach is beyond criticism in terms of quantifying one’s
subjective beliefs, but what can we do with those subjective
beliefs? Suppose that a scientist at the FDA had a strong
subjective belief that a COVID-19 vaccine was safe and
effective . . . is that reasonable grounds for approval?
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Frequentist approach: Appealing aspects

• The alternative approach uses long-run frequency to calibrate
likelihood

• For example, suppose we could show that by constructing
intervals via taking all the θ values such that
L(θ)/L(θ̂) > 0.15, then this contained the true value of θ
95% of the time

• This would also connect likelihood to probability, and provide
an objective guarantee about the performance of our approach
in a long-run sense
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Frequentist approach: Concerns

The objective interpretation of the frequentist approach is
appealing, but is subject to even more concerns:

• Easier said than done: It is quite difficult, even for simple
problems, to obtain results like the claim made on the
previous slide. Typically, approximations are involved – and
may break down.

• Awkward interpretation: The approach tells us about our
long-run error rates in, say, approving vaccines, but doesn’t
actually say anything about the specific COVID-19 vaccine
that we are considering approving.
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Likelihood and probability: Summary

To summarize the lecture so far:
• Likelihood alone can provide relative statements about which

values of θ are more compatible with the observed data than
others

• However, to make these statements absolute, we need to
connect likelihood to probability

• Doing so involves choosing a framework (Bayesian or
frequentist), which in turn introduces debate
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Combining likelihoods

• It is straightforward to combine likelihoods from independent
sources:

L(θ|x1, x2) = L1(θ|x1)L2(θ|x2),

where L1 and L2 can represent completely different models
and x1, x2 completely different types of data

• This is even more conveniently represented on the log scale:

ℓ(θ|x1, x2) = ℓ1(θ|x1) + ℓ2(θ|x2),

where ℓ(θ) = log L(θ)
• This is an extremely useful property
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Invariance

• We now turn our attention to some appealing mathematical
properties of likelihood

• One interesting result is that likelihood is invariant to
transformations of the parameter

• For example, suppose we decide to parameterize our earlier
binomial example in terms of the log-odds,
ϕ = log{θ/(1 − θ)}:
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Practical implications

In particular, for any 1:1 transformation ϕ = g(θ),
• ϕ̂ = g(θ̂) (“invariance property of the MLE”)
• If [θ1, θ2] is a likelihood interval for θ, then [g(θ1), g(θ2)] is a

likelihood interval for ϕ, where likelihood interval means
[θ1, θ2] = {θ : L(θ)/L(θ̂) > c} for some c
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Remarks

• There are two kinds of invariance:
◦ Measurement invariance, which deals with transformations of

an observable quantity (e.g., measuring height in inches vs
centimeters)

◦ Parameter invariance, which is the kind we have been
discussing;

The first kind of invariance is universally agreed upon as
reasonable

• The second kind, however, is more debatable – for example,
Bayesian inference does not satisfy it

• The reason is that if θ is a random variable, then a
transformation will introduce a Jacobian term, which must
also be taken into account
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Sufficiency

• Another important property possessed by likelihood is
sufficiency

• Definition: A statistic T (X) is sufficient for θ if the
conditional distribution X|T (X) does not depend on θ

• For example, suppose X1, . . . , Xn
⊥⊥∼ N(θ, 1):

◦ x̄ is sufficient for θ
◦ This means that if I were to, say, take a set of data and

simulated another set with the same mean, then both sets of
data would be equally informative about θ – nothing can
possibly be learned about θ from the real data that I couldn’t
learn from the simulated version

• Note that sufficiency is entirely dependent on the assumed
model
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Factorization theorem

• Proving sufficiency based on the definition is often tedious; it
is usually much easier to show using the following theorem

• Theorem (Factorization): The statistic T (X) is sufficient
for θ if and only if the model p(x|θ) can be factorized as
follows:

p(x|θ) = g(t(x), θ)h(x)

• Here, p(x|θ) can be continuous, discrete, or mixed; we will
discuss these situations more in a future lecture

• Corollary: The likelihood based on a sufficient statistic is
equivalent to the likelihood based on the entire data.
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Minimal sufficiency

• Sufficiency seems like a nice property to have, although there
are lots of sufficient statistics – in particular, the full set of
observations {x1, . . . , xn} is always a sufficient statistic

• There is a (partial) ordering here, though: from {x1, . . . , xn},
we could calculate x̄, but not the other way around; this leads
to the following refinement of sufficiency

• Definition: A sufficient statistic T (X) is minimal sufficient if
it is a function of any other sufficient statistic.

• In our N(θ, 1) example, x̄ is minimal sufficient, as is
∑

i xi,
but {x1, . . . , xn} is not

• The general idea is that a minimal sufficient statistic offers
the maximum amount of data reduction – any additional
reduction would introduce loss of information
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Likelihood and minimal sufficiency

• A rather intriguing result is that the likelihood function itself
is minimal sufficient

• This perhaps requires some explanation: for any given θ, the
expression L(θ) is simply a real number – this is not the
sufficient statistic we’re talking about

• Instead, the statistic we’re talking about is L(·), the function
over all possible values of θ; note that we do not have to
know the true value of θ in order to construct this curve (i.e.,
it is a statistic)

• Theorem: The function L(·|x) is minimal sufficient.
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Likelihood = perfect?

• As I said, this result is intriguing – if likelihood is minimal
sufficient, then it always summarizes everything we need to
know about the data . . . nothing else matters and there is no
reason to use anything other than likelihood for inference

• However, this begins to head into territory that is not agreed
upon by all statisticians

• To clarify the controversies involved, let us first distinguish
between two concepts: the strong likelihood principle and the
weak likelihood principle
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The weak likelihood principle

• Weak likelihood principle: Suppose x1 and x2 are two sets
of observed data coming from the same experiment. If
L(·|x1) is equivalent to L(·|x2), then any conclusions drawn
from observing x1 and observing x2 should be identical.

• In reality, statisticians routinely use data to check model
assumptions, so it is possible that observing, say, x2 could
lead us to use a different model, which would violate the
above principle

• However, if we assume the model is known, then the above
principle is entirely reasonable; it is hard to mount any
meaningful objection to it
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The strong likelihood principle

• However, what about likelihoods coming from different
experiments?

• Strong likelihood principle: Suppose x1 and x2 are two sets
of observed data from different experiments involving the
same unknown parameter. If L(·|x1) is equivalent to L(·|x2),
then any conclusions drawn from observing x1 in experiment 1
should be identical to conclusions drawn from observing x2 in
experiment 2.

• This is quite a bit stronger, as it is saying: not only do I not
need the rest of the data, I also don’t need to know anything
about the experimental design – just give me the likelihood,
everything else is irrelevant to inference
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Binomial vs. Negative binomial

• Unlike the weak likelihood principle, which is relatively
uncontroversial, the strong likelihood principle is directly
contradicted by the standard practice of frequentist statistics

• For example, consider Experiment #1: a trial is repeated
n = 20 times and x = 6 successes are observed:

L(θ|x) =
(

20
6

)
θ6(1 − θ)14

• Now consider Experiment #2: a trial is repeated until x = 6
successes are observed and this requires n = 20 trials:

L(θ|x) =
(

19
5

)
θ6(1 − θ)14
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Hypothesis testing

• Clearly, the likelihoods are equivalent, so the strong likelihood
principle tells us to draw the same conclusions from both
experiments

• However, calculating frequentist p-values involves the
sampling design as well, and we get different results for the
two experiments (p-values are two-sided for H0 : θ = 0.5):

◦ Experiment #1: p = 0.12
◦ Experiment #2: p = 0.03

• Thus, we might conclude that θ ̸= 0.5 after observing
experiment 2, but not from experiment 1, even though the
likelihoods are equivalent
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Is this absurd?

• This might seem reasonable at first, but it can take us into
potentially absurd territory

• Our conclusions must now depend on the internal thoughts
and intentions of the researcher?

• What if these aren’t known?
• It is worth noting that Bayesian inference, by contrast, obeys

the strong likelihood principle and draws the same conclusion
from these two experiments (assuming the priors are the
same, of course)
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Sequential testing

• On the other hand, consider the idea of sequential testing:
based on the existing data x1, . . . , xn, we decide to either
stop where we are or continue to collect more data

• Our motivation for collecting data does not enter the
likelihood, only the data we collect, so the strong likelihood
principle would tell us to ignore the sequential aspect of the
testing and treat the data as if the number of observations
was prespecified
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Problematic?

• However, this would seem to open the door for abuse, as it
allows us to stop collecting data at a point where the data
looks good

• In particular, if we are calculating p-values, we could decide to
stop collecting data as soon as p < 0.05, which will happen
eventually with probability 1 (we will prove this fact later in
the course)

• This would of course be a big problem for frequentist
inference (our type I error rate would be 100%); it might seem
fishy for a Bayesian to ignore this, although it is difficult to
make an objective case against it
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Other challenges to the likelihood principle

• One final concern that is often raised against the likelihood
principle is how to handle multi-model or multi-parameter
uncertainty

• For example, perhaps we have a large number of potential
covariates to include in a model, and only include some of
them in the final model; the likelihood itself does not reflect
this

• The Bayesian approach can address this issue by introducing
priors over the potential space of models; we will discuss some
more direct modifications and extensions to the likelihood
later in the course
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Summary

• Likelihood has many attractive properties and is a natural
quantity to focus inference upon

• Likelihood is important to both Bayesian and Frequentist
statistical paradigms

• Likelihood is not without challenges, however – there are
controversies over its use as well as situations where likelihood
alone may be misleading
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