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Introduction

• For our final lecture, we’ll take a look at “pseudo” likelihoods
• Unlike the other variants, pseudo-likelihood is somewhat

vague term with no single theoretical framework
• Rather, the term is used to describe functions of the

parameters that depend on the data which are not the
likelihood but nevertheless have properties similar to that of
the likelihood
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Why pseudo-likelihood?

• Pseudo-likelihoods arise is three main contexts:
◦ Response-biased sampling
◦ Two-stage (“plug-in”) likelihoods
◦ Composite likelihoods

• In all of these scenarios, the true likelihood is complicated; to
make analyzing the data feasible, we are going to replace it
with something simpler
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Response-biased sampling

• We’ll start with response-biased sampling: instead of a simple
random sample, observations are sampled conditional on the
outcome, with the case-control study being the most common

• In such situations, the prospective likelihood (the one based
on the simple random sample) is usually straightforward and
easy to work with, but isn’t the actual likelihood based on the
study design . . . is it OK to use it anyway?
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Binomial example: Setup

• Let’s start with the simplest case: Yi
iid∼ Bern(π) for

i = 1, . . . , N

• However, we do not get to observe all N observations; instead,
if Yi = 1, the observation is sampled with (known) probability
p1, while if Yi = 0, it is sampled with (known) probability p0

• Introducing some extra notation, let N1 and N0 denote the
unobserved number of events, with n1 and n0 the observed
number of cases and controls in our sample
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Binomial example (cont’d)

• As a concrete example, let’s suppose π = 0.2, p1 = 1, and
p0 = 1/2 (we get to see all the cases, but only half of the
controls)

• In this scenario, if N = 100, we would expect to see n1 = 20
cases and n0 = 40 controls; the naïve estimate n1/(n1 + n0)
would produce the biased estimate π̂ = 0.333

• Clearly, we must make adjustments for the sampling
frequencies p1 and p0
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Likelihood?

• Let’s say we attempted to carry out a likelihood-based
analysis of this problem with

Li = P(Yi ∩ Si)

=
{

πp1 if Yi = 1
(1 − π)p0 if Yi = 0

where Si denotes the event that the observation was sampled
• Unfortunately, this produces the “MLE” of π̂ = n1/(n1 + n0),

exactly what we said we didn’t want
• What went wrong?
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Correct likelihood

• This likelihood is incorrect, as we have ignored the unsampled
data

• The correct likelihood is P(Yi ∩ Si|Si), the probability of Yi

conditional on the fact that the observation made it into the
sample

• With this likelihood, the score is now

u(π) = n1
π

− n0
1 − π

− (n0 + n1)(p1 − p0)
πp1 + (1 − π)p0

• The good news is that this score is now “correct”, in that the
MLE is now sensibly adjusted for sampling fraction:

π̂ = n1p0
n1p0 + n0p1
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Remarks

• The bad news is that the likelihood is far more complicated
and difficult to work with

• In this simplest of scenarios, it is still possible to work through
the algebra, but messy enough that I chose to skip it during
class time

• One can imagine that this approach is not going to scale up
particularly well with more complex probability models
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An “estimated” likelihood

• Perhaps there’s a simpler way
• In terms of N1 and N0, the likelihood for π is simply that of a

binomial distribution
• Unfortunately, N1 and N0 are unobserved; however, they can

easily be estimated: N̂j = nj/pj

• Thus, perhaps a reasonable way to proceed is to simply plug
in these estimates into the binomial likelihood
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Inverse probability weighting

• Doing so, we obtain the log-likelihood

ℓ(π) = n1
p1

log π + n0
p0

log(1 − π)

• Note that this is the original, “naïve” likelihood, but where
the observations have been weighted by 1/p1 and 1/p0

• This idea, known as inverse probability weighting, comes up
often in statistics, in a variety of contexts
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Connection with true likelihood
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Remarks

• As the figure illustrates, the pseudo-likelihood is roughly
similar to the true likelihood, and the pseudo-MLE is the same
as the true MLE

• However, the likelihoods are not the same – in particular, the
pseudo-likelihood is narrower

• Treating the pseudo-likelihood as an ordinary likelihood,
therefore, is going to produce variance estimates that are too
small
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Variance estimation

• This is exactly the kind of thing that one would use a
sandwich estimator for:

√
n(π̂ − π∗) d−→ N(0, A−1BA−1),

where A = −E∇2ℓi(π∗) is the pseudo-information and
B = Vui(π∗) is the variance of the pseudo-score

• These approaches yield the following 95% Wald CIs for π:
◦ True likelihood: [0.114, 0.286]
◦ Pseudo-likelihood (no adjustment): [0.122, 0.278]
◦ Pseudo-likelihood (corrected): [0.114, 0.286]
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Case-control studies

• The most common scenario in which response-biased sampling
arises is in the application of logistic regression to case-control
studies

• In this experimental design, a fixed number of cases (n1) and
controls (n0) are sampled

• The disease status, therefore, is not random; rather it is the
exposure(s) that are random

• The true likelihood, therefore, is

L =
∏

i

p(xi|yi)
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A pseudo-likelihood

• This is an inconvenient likelihood for several reasons; perhaps
most importantly, it requires us to specify a (multivariate)
distribution on the predictors, something that is not required
in regression approaches

• Suppose we instead treat the data as prospectively acquired,
with the likelihood

L =
∏

i

p(yi|xi);

this is obviously much more convenient, as this is just the
usual likelihood from a logistic regression model

• However, this is a pseudo-likelihood in the sense that it does
not correspond to the actual likelihood from the experiment
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Inference

• In terms of estimating the intercept, the kinds of adjustments
we just worked through for response-biased sampling are
necessary in order to obtain consistent estimates and correct
standard errors

• However, in the special case of logistic regression, it can be
shown that simply treating the pseudo-likelihood as the true
likelihood yields the correct MLEs and standard errors (i.e.,
those of the true likelihood) for all parameters except the
intercept

• Since the regression coefficients and their associated odds
ratios are typically the only parameters of interest, this means
that regular logistic regression can be applied; no adjustments
for the retrospective design are necessary
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Composite likelihood

• Another type of pseudo-likelihood arises from multiplying
together separate small components of the likelihood; this is
known as composite likelihood:

Lcomp(θ|y) =
K∏

k=1
Lk(θ|y)

• Typically, this is done when the components are simple to
derive but the full likelihood is very complicated
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One-dimensional lattice

• For example, suppose we have ordered observations
y1, y2, . . . , yn (perhaps ordered with respect to time, or along
a genome)

• We might specify a model for how each observation depends
on its neighbors: p(yk|yk−1, yk+1)

• Multiplying these probabilities together, however

p(y2|y1, y3) × p(y3|y2, y4) . . .

does not actually result in the correct likelihood:

p(y2) × p(y3|y2) × p(y4|y2, y3) . . .
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Ising model

• For example, suppose yk ∈ {0, 1} and let nk = yk−1 + yk+1

• One way to model the dependence of a point on its neighbors
is with the Ising model

p(y2, . . . , yn−1|y1, yn) = exp
{

α
n−1∑
k=2

yk + β
n−1∑
k=2

yknk − h(α, β)
}

,

where positive values of β reflect positive dependence (1s and
0s tend to cluster together)

• This true likelihood is intractable, however, since the
normalizing constant h(α, β) is very complicated
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Ising model with composite likelihood

• The composite likelihood, however, is quite convenient:

p(yk|yk−1, yk+1) = exp(α + βnk)
1 + exp(α + βnk) ,

in other words, simple logistic regression
• The parameters α and β are then estimated by maximizing

ℓcomp(α, β) =
∑

k

ℓk(α, β|yk);

derivatives, Hessians, etc., are straightforward
• The same idea can be extended to higher dimensions as well

as continuous outcomes
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Standard errors

• In general, composite likelihoods may be seen as misspecified
likelihoods, and the sandwich estimator A−1BA−1 can be
used to obtain standard errors

• However, the dependence among observations can make it
difficult to estimate B, the “meat” of the sandwich estimator;
the empirical estimator

B̂ = 1
K

k−1∑
k=2

u(θ̂|yk)u(θ̂|yk)⊤

can be biased for correlated data because u(θ̂) is
systematically closer to zero than u(θ∗) (many alternative
estimators have been proposed)
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Remarks

• Composite likelihood methods have found many uses in
analyzing longitudinal, time series, genetic, and
spatio-temporal data

• They are also used in network analysis, where it is (relatively)
easy to model how an individual depends on their neighbors,
but hard to specify the full likelihood of an entire network

• The idea of taking a valid likelihood for an individual
observation but then combining these likelihoods in a way
that is not the full likelihood also appears in a variant called
partial likelihood, which is used extensively in survival analysis
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The plug-in likelihood

• In previous lectures, we have discussed many approaches for
handling the scenario where θ is a parameter of interest and η
are nuisance parameters

• Consider the following pseudo-likelihood, where η̂ is an
estimate of η (not necessarily the MLE):

L(θ) = L(θ, η̂),

where η̂ is treated as a fixed constant
• This is sometimes referred to as the “two-stage” likelihood,

the “plug-in” likelihood, or the “estimated” likelihood
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Pseudo-likelihood vs profile likelihood

• Note that this is quite different from the profile likelihood
• In a profile likelihood, η̂(θ) is a function of θ

• In the pseudo-likelihood, we have simply plugged in η̂ for η
and are not accounting for its potential dependence on θ in
any way

• Because of this, as we saw in the earlier response-biased
sampling approach, adjustments must be made to the
variance in order to compensate for the failure to account for
this dependence
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Theoretical behavior of pseudo-likelihood

Theorem (Gong & Samaniego): Suppose assumptions (A)-(C)
from the consistency of MLE lecture are met. Then

• If η̂ is consistent, there exists a sequence of consistent roots θ̂

• If [ 1√
n

u1(θ∗, η∗)
√

n(η̂ − η∗)

]
d−→ N

(
0,

[
Σ11 Σ12
Σ21 Σ22

])
,

then
√

n(θ̂ − θ∗) d−→ N(0, σ2), where

σ2 = I−1
11 + I−2

11 I12(Σ22I21 − 2Σ21),

where the Fisher information matrices are for a single
observation and evaluated at (θ∗, η∗)
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Remarks

• This can be a useful framework for studying “two-stage”
procedures, in which some analysis is done in stage one and
results/estimates from that step are fed into a second stage

• However, the Gong & Samaniego approach is considerably
more difficult to apply in practice than the sandwich estimator,
as empirical estimators for Σ are not straightforward
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Some final thoughts

• Hopefully by this point in the course you feel that you’ve seen
the wide applicability of likelihood, along with many useful
extensions, modifications, and applications

• Certainly, there are others we didn’t cover, but hopefully
you’ve gained enough experience and familiarity with the tools
we have derived and used that you could read and understand
how they work on your own
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