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Misspecified and partially specified models

• As you may recall, establishing the asymptotic normality of
the MLE revolved around taking a Taylor series expansion of
the score function

• This raises an interesting question: since our inferential
methods (Score and Wald) rely entirely on the score and its
properties. . . do we even need to specify the rest of the model?

• As we will see, answering this question (partial specification)
also sheds light on what happens to the MLE when our model
is wrong (misspecification)
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Definition

• Let’s formalize this idea: given data y1, . . . , yn, suppose we
intend to estimate parameters θ by solving the equation∑

i

u(θ|yi) = 0,

where u : Rd → Rd is a known function
• Perhaps u is the score function of some likelihood, but we are

not bothering to specify that likelihood
• This idea goes by a few different names in the statistical

literature:
◦ Estimating equations
◦ Quasi-likelihood
◦ “M-estimation” (because it’s kind of like an MLE)
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Quasi-likelihood: Advantages

• Why might we choose to take this approach?
• One main reason is simplicity: in many applications such as

longitudinal data, spatial statistics, and time series analysis,
complex correlation structures are present and specifying a full
likelihood is rather complex

• The other reason involves robustness: by focusing only on
properties of the score, our results may hold for a wider class
of models
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Quasi-likelihood: Disadvantages

Obviously, there are also potential disadvantages:
• Our estimates may be less efficient (higher SE for a given

sample size)
• Certain likelihood tools may be inaccessible, such as AIC and

likelihood ratio tests
• Small-sample inference may be problematic; without an actual

probability model, we have to rely on asymptotic approaches
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Exponential dispersion families

• The term “quasi-likelihood” is typically used to refer to the
application of this idea in the context of GLMs

• Recall that for an exponential dispersion family

ℓ(θ) ∝ yθ − ψ(θ)
ϕ

,

we have

E(y) = ∇ψ(θ) ≡ µ

V(y) = ϕ∇2ψ(θ) ≡ ϕv
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GLMs

• If we are in the modeling context where µi depends on a set
of predictors xi through coefficients β, we have the score
function ∑

i

∂θi

∂β

∂ℓi
∂θi

• Setting this equal to zero, we can rewrite the estimating
equation so that it is solely a function of the mean and
variance of y:

ϕ−1 ∑
i

∂µi

∂β
v−1

i (yi − µi) = 0
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Mean-variance modeling

• The appeal of this approach is that we can model

EYi = µi(β)
VYi = ϕv(µi)

without worrying about the full distribution of Y
• In other words, we can focus on modeling the mean and the

only real distributional assumption we make is the
mean-variance relationship v(µi)
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Generalized estimating equations

• These derivations are the same for multivariate outcomes, in
which the estimating equations are

∑
i

∂µi

∂β
V−1

i (yi − µi) = 0

• In the multivariate context, this idea is known as generalized
estimating equations, or GEE

• This is a popular approach for analyzing longitudinal data,
and you will learn more about how it works in practice when
you take Longitudinal Data Analysis
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Properties of the “quasi-score”

• Does our usual likelihood theory hold for these
quasi-likelihood models?

• Not by our previous arguments; recall that we needed a true
likelihood (and some regularity conditions) to establish that
Eu(β∗) = 0 and Vu(β∗) = −E∇u(β∗)

• Let ui(β) = ϕ−1(∂µi/∂β)v−1
i (yi − µi), with

u(β) =
∑

i ui(β); what properties does this “quasi-score”
statistic have?
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Properties of the “quasi-score” (cont’d)

• As it turns out, u(β) has the same theoretical properties as
the usual score:

Eu(β∗) = 0
Vui(β∗) = −E∇ui(β∗)

• Thus, we can apply our previous theoretical arguments (again,
assuming Lindeberg condition, an interior neighborhood, and
a suitably smooth u) to obtain the asymptotic distribution

(X⊤WX)1/2(β̂ − β∗) d−→ N(0, I),

where W is a diagonal matrix with entries (∂µi/∂ηi)2/(ϕvi)
• One can also use a robust/sandwich estimator for the variance

(we’ll talk more about this shortly)
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Poisson and quasi-Poisson

• To see an example of how this works, let’s consider the
Poisson distribution

• As you may have seen in other courses, the Poisson
distribution is a convenient distribution for modeling counts,
but in practice there are usually extra sources of variability
such that the relationship VYi = EYi often does not hold in
practice

• A simple remedy is a quasi-Poisson model in which VYi = ϕµi
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Quasi-Poisson: Estimates and standard errors

• Note that ϕ cancels out of the estimating equation – Poisson
and quasi-Poisson models give the exact same estimates β̂

• The standard errors, however, are different
• The variance-covariance matrix is (X⊤WX)−1 in both cases,

although
◦ Poisson: wi = µi

◦ Quasi-Poisson: wi = µi/ϕ

• The dispersion parameter ϕ can be estimated with

ϕ̂ =
∑

i(yi − µi)2/µi

n
,

although typically n− d is used to account for degrees of
freedom
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Simulation: Setup

• To see how this works, let’s simulate some data in which the
mean model is correct, but the variance is incorrect

• Specifically, let

gi ∼ Exp(1)
log(µi) = xiβ

Yi|gi ∼ Pois(µigi)

• Note that the quasi-Poisson model is also wrong here, but at
least it has a dispersion parameter ϕ that allows for extra
variability beyond what the model can account for
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Simulation: Results

Over 1,000 independent replications, for 95% confidence intervals:

Coverage Average SE

Poisson 0.749 0.275
Quasi 0.939 0.445
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General quasi-likelihood

• Thus far, we have considered quasi-likelihood exclusively as it
pertains to regression models of the mean

• In the time we have left, let’s look at this idea more broadly,
without assuming that u(θ) can be written in a form
involving yi − µi (in this context, the idea is often called
M-estimation instead of quasi-likelihood)

• To make the discussion a bit more specific, we’ll focus on the
use of quasi-likelihood as it pertains to robust estimation
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That non-robust mean

• As you know, the mean is not robust to outlying observations
• One way of visualizing this is to look at it as an M-estimate,

with u(µ|x) = x− µ:
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the influence that x has over the solution grows without
bound as x becomes far from µ
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The Huber function

• Consider instead the idea of “capping” the influence of x:
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• This quasi-score function was proposed by Peter Huber in
1964
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Remarks

• As you would imagine, the resulting M-estimate is much more
accurate than the mean when outliers or contamination is
present

• So is the median, of course, but one big advantage of the
Huber estimate is that unlike the median, it is continuous in
the sense that small changes to the data produce small
changes in the estimate (unless we’re in the capped region)

• The u function on the preceding slide would be the score
function of a distribution that was normal near the mean, but
at some point the tails of the distribution became exponential
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Theoretical setup

• With this in mind as a potentially motivating example (there
are many, many other examples of robust location estimators
and u functions for a wide variety of problems), let’s consider
the theoretical properties of these estimators

• First, some notation:

λn(θ) = 1
n

∑
i

u(θ|xi)

λ(θ) = Eu(θ|X)

• Note, of course, that λn(θ) P−→ λ(θ) for all θ
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But what’s θ?

• Second, let’s think about θ∗. . . what is it?
• We can’t really think about it as the “true” value in the

probability model, since we’re not even specifying a full model
anymore

• For the theory to work, we have to define θ∗ as the (unique)
solution to λ(θ) = 0

• In the case of a misspecified likelihood, it can be shown that
θ∗ is the value of θ that minimizes the Kullback-Liebler
distance to the true data generating process
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Main result

Theorem: Let {xi}n
i=1 be an iid sample, with θ̂ satisfying∑

i u(θ|xi) = 0. Suppose
(i) u(θ|xi) is monotone
(ii) λ(θ) is differentiable at θ∗ and −∇λ(θ∗) is positive definite
(iii) Eu(θ)u(θ)⊤ is finite and continuous in a neighborhood of θ∗

(iv) ∇2u(θ) are bounded in a neighborhood of θ∗

Then √
n(θ̂ − θ∗) d−→ N(0,A−1BA−1),

where

A = −∇λ(θ∗)
B = Eu(θ∗|X)u(θ∗|X)⊤.
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Remarks

• Condition (i) ensures that solutions to λ(θ) = 0 and
λn(θ) = 0 are unique; as with the corresponding MLE
theorem, this can be relaxed to a conclusion about the
existence of an asymptotically normal solution

• For a correctly and fully specified model, A = B = I and we
simply have the usual asymptotic normality result

• However, the “sandwich estimator” A−1BA−1 is valid in a
wider range of models, and is therefore often recommended as
a better way of estimating variance in order to obtain
inferential results that are (more) robust against model
misspecification

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 23 / 24



Main idea
Generalized linear models

Robust estimation

Overview
Theory

Estimating A and B

• The empirical estimator of A = −∇λ(θ∗) is

1
n

n∑
i=1

∇u(θ̂|xi);

i.e., the average of the observed information
• The empirical estimator of B = Eu(θ∗|X)u(θ∗|X)⊤ is

1
n

n∑
i=1

u(θ̂|xi)u(θ̂|xi)⊤;

for a correctly specified model, this would also be a consistent
estimator for I although it is less efficient than the standard
estimators 1

nIn(θ) and I(θ)
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