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Introduction

• Today we will be discussing a very flexible (and my personal
favorite!) likelihood extension of called penalized regression

• For historical reasons, penalized likelihood is usually presented
in terms of minimizing the negative log-likelihood (known as
the loss function) as opposed to maximizing the likelihood

• The basic idea of penalized likelihood is that we will instead
minimize

q(θ|X) = −ℓ(θ|X) + p(θ),

where the penalty function p penalizes what we would think of
as unreasonable or unrealistic values of θ (note that the
penalty function does not depend on the data)
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What to penalize?

• What do we mean by unreasonable values of θ?
• We will see a variety of examples in today’s lecture, but

typically we mean “extreme” values, such as infinite regression
parameters, odds ratios close to zero or infinity, or
probabilities close to 0 or 1

• The main idea is that even in the absence of any data, we can
usually judge some parameter values to be more realistic than
others
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Connection to Bayesian paradigm

• This is, of course, the central concept in Bayesian reasoning
as well

• From a Bayesian perspective, p(θ) is simply the log-density of
the prior distribution, and the objective function q(θ|X) is the
posterior log-density (up to a constant, and multiplied by -1)

• From this perspective, penalized likelihood simply means the
study of the asymptotic/frequentist properties of the posterior
mode, or MAP (maximum a posteriori) estimator
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Theoretical considerations

• The theory of penalized likelihood is therefore governed,
broadly speaking, by the Bernstein-von Mises theorem

• Recall that this theorem states that since p(θ) remains fixed
as we collect an increasing amount of data, its contribution is
negligible asymptotically and we have

√
n(θ̂ − θ∗) d−→ N(0,I−1(θ∗))

just as we would for the ordinary MLE
• Thus, we may carry out inference using I−1 or I−1, but

simply evaluating the information at the penalized MLE θ̂
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Variance estimation

• Alternatively, we can estimate standard errors by taking the
second derivative of the objective function q:

∇2q = −∇2ℓ + ∇2p

• If the likelihood is only lightly penalized, there is little
difference between these two approaches

• If there is a modest amount of penalization, then typically this
second approach (including ∇2p) is more accurate

• If there is a heavy amount of penalization, then the
asymptotic approximation is likely questionable in the first
place, and perhaps you should just carry out a fully Bayesian
analysis instead
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Binomial proportions

• Let’s now see how this idea can be applied to a variety of
problems, beginning with the simple problem of constructing
confidence intervals for a binomial proportion

• As you are probably already aware, the Wald confidence
interval is truly terrible in this situation

• The underlying problem is that the quadratic approximation
breaks down near π = 0 and π = 1, where I(π) → ∞ and
I−1(π) → 0
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Binomial proportions: Penalty

• Thus, it may be beneficial to penalize values of π near 0 and 1
(this is also just intuitively reasonable in most situations)

• This can be accomplished with the penalty function

−p(π) = λ log π + λ log(1 − π)
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Resulting penalized likelihood

• From a Bayesian perspective, this penalty corresponds to the
use of a Beta(λ + 1, λ + 1) prior

• This results in the penalized likelihood

−q(π) = (x + λ) log π + (n − x + λ) log(1 − π)

• Note that this is simply the likelihood of the original binomial
distribution, but with λ successes and λ failures added to the
observed data
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Penalized Wald interval

• Using the penalized score and information, we have the
penalized Wald interval π̂ ± z1−α/2SE, where

π̂ = x + λ

n + 2λ

SE =

√
π̂(1 − π̂)
n + 2λ

• The specific choice λ = 2 has been studied in the literature
and is known as the Agresti-Coull interval
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Simulation study
Empirical coverage of the two Wald intervals over 2,000
independent replications: π∗ = 0.1, nominal coverage 95%
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Complete separation

• Similar issues can arise in the regression setting
• In particular, when predictors are binary, it may happen that

all observations where Xij = 1 are cases; this is more likely to
happen when n is small, when the number of predictors is
large, when the event is rare, or when the predictor is rare

• When it does happen, the likelihood is no longer unimodal but
instead increases without bound as βj → ∞

• This problem is known as complete separation

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 12 / 28



Introduction
Regression
Other uses

Firth regression
Ridge regression

Complete separation: Example

• For example, suppose that we have 200 cases, 200 controls,
that X1

iid∼ N(0, 1), but that X2 is binary and xi2 = 1 occurs
only once

• In this situation, we will obtain results something like this
(actual results are a bit arbitrary depending on the algorithm,
since it cannot converge):

Estimate Std. Error Pr(>|z|)

(Intercept) -0.01 0.10 0.927
x1 0.09 0.10 0.358
x2 22.66 48196.14 1.000
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Firth penalized regression

• One approach to addressing this problem was proposed by
David Firth in 1993

• His idea was to apply a penalty in the form of a Jeffreys prior
to the logistic regression likelihood; this results in the
penalized log-likelihood

ℓ(β) + 1
2 log |I(β)| ,

where |A| denotes the determinant of the matrix A
• The resulting penalized score is

u∗
j (β) = uj(β) + 1

2tr[I−1(β)∇jI(β)]
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Firth penalized regression: Details

• Working through the linear algebra, we find that we can write
the penalized score in terms of the “hat” matrix

H = W1/2X(X⊤WX)−1X⊤W1/2

• Letting {hi}n
i=1 denote the diagonals of the hat matrix, we

have

u∗
j (β) = x⊤

j (y − π + a),

where ai = hi
2 (yi − πi + 1 − yi − πi)

• Thus, we see a similar phenomenon as we saw earlier, where
Firth regression is essentially adding a success and failure to
the likelihood, here each with weight hi/2
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Returning to earlier example

• Applying this method to our earlier example with complete
separation, we now have reasonable estimates and inference:

Estimate SE p

(Intercept) -0.01 0.10 0.927
x1 0.09 0.10 0.360
x2 1.20 1.64 0.465

• The standard error here is based on I = X⊤WX, where W
is evaluated at the penalized MLE

• This is typical in Firth regression, as the penalization is very
slight

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 16 / 28



Introduction
Regression
Other uses

Firth regression
Ridge regression

Remarks

• This penalization typically results in more accurate estimation,
although its primary appeal is the elimination of complete
separation; similar issues arise in Cox proportional hazards
regression, to which Firth’s idea is also often applied

• One can deal with complete separation in other ways, such as
changing the model or dropping certain terms from the model
if they introduce problems, but this is a bit unsatisfying and
ad hoc, particularly if one is interested in rare risk factors

• Firth penalized regression is not as well known as it should be,
but is widely used for example in genetic association studies,
where logistic regression models are fit across thousands of
genetic variants, some of which will be rare, and complete
separation is virtually guaranteed to come up

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 17 / 28



Introduction
Regression
Other uses

Firth regression
Ridge regression

Ridge regression

• The general idea of penalizing regression coefficients away
from infinity can also be applied in linear regression

• One common way of doing so is to penalize the sum of the
squares of the regression coefficients

• This idea, known as ridge regression, minimizes the objective
function

1
2σ2

n∑
i=1

(yi − xT
i β)2 + λ

2

d∑
j=1

β2
j
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Ridge regression: Solution and information

• This yields the penalized MLE

β̂ = σ−2(σ−2X⊤X + λI)−1X⊤y

• Furthermore, the penalized information matrix is

I = σ−2X⊤X + λI

• Note that compared with the standard information matrix, the
penalized version has a “ridge” down the diagonal
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Ridge regression: Unique solutions

• This ridge grants an important stability to ridge regression
that ordinary linear regression lacks

• Namely, although the standard information matrix is not
necessarily positive definite, the penalized information is
(unless λ = 0)

• This confers many important benefits:
◦ Solutions are always unique
◦ Standard errors are always finite
◦ Estimation much more accurate in the presence of correlated

predictors
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Ridge regression: Simple example
• To see how this is useful, let’s just look a simple example with

two highly correlated predictors:
# Ridge: Motivation
x1 <- rnorm(20)
x2 <- rnorm(20, mean=x1, sd=.01)
y <- rnorm(20, mean=3+x1+x2)
coef(lm(y~x1+x2))
# (Intercept) x1 x2
# 3.021159 21.121729 -19.089170

• In this simulated example, we can directly observe that these
estimates are wildly inaccurate

• However, even if we didn’t know β∗, it is rather unlikely that
X1 has a large positive effect, but it just happens to be
canceled out every time by a large effect from X2
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Ridge regression: Simple example (cont’d)

Let’s see what ridge regression makes of this situation:

coef(lm.ridge(y~x1+x2, lambda=1))
# x1 x2
# 3.0489734 0.9874831 0.9585603

Much better than ordinary least squares
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Additional uses

• Before ending this lecture, I’d like to briefly look at two other
applications of penalized likelihood, as they pertain to
smoothing and sparsity

• We don’t have time to go into the details of how these
methods work, but I think seeing the applications will be
helpful to broaden your horizons in terms of thinking about
situations in which penalization might be useful
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Variable selection and sparsity

• We introduced ridge regression earlier and saw that it was
very helpful for dealing with collinearity

• However, what if we wanted to impose a penalty that not only
discouraged extremely large coefficient values, but also
discouraged variables from even entering the model in the first
place?

• We do this informally quite often in statistics when building
models, iteratively adding and removing predictors from a
model; could we do this automatically through the use of
penalization?
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Lasso

• Indeed we can, and with a surprisingly small change to ridge
regression

• Suppose we penalize not the squared values of the
coefficients, but their absolute values:

p(β) =
d∑

j=1
|βj |

• It turns out that doing so produces “sparse” penalized MLEs,
in the sense that we have β̂j = 0 exactly for some coefficients

• This method is called the lasso, for least absolute shrinkage
and selection operator
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Lasso: Toy example
• To see the general idea of how this works, let’s apply it to a

toy example:
# lasso
X <- matrix(rnorm(100*10), 100, 10)
y <- rnorm(100, 2*X[,1] + 3*X[,7])
fit <- glmnet(X, y)
coef(fit, s=0.2)
# s1
# V1 1.633213
# V7 2.860543

with all other coefficients zero
• If you are curious to learn more about this idea (and other

penalized regression models), check out BIOS 7240: High
dimensional data analysis
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Nonparametric regression

• Consider the nonparametric regression problem in which
EYi = f(xi)

• Suppose that we’re willing to assume Y is normally
distributed, but not willing to assume that its relationship
with X is linear

• We would be interested in minimizing the residual sum of
squares:

1
2σ2

n∑
i=1

(yi − f(xi))2,

but this is clearly problematic as I could draw a wildly varying
function that hits every yi value
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Illustration
Suppose, then, we introduce a penalty that discourages excessive
“wiggliness”:

p(f) = λ

∫
[f ′′(u)]2du
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