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Introduction

• We’ve now covered the most important theoretical properties
of the MLE: it is consistent, asymptotically normal, and
efficient

• Today, we turn our attention to a different problem:
likelihood-based inference

• Specifically, we will go beyond the likelihood as a mechanism
for simply producing point estimates and look at how we can
use the likelihood function to construct (frequentist)
confidence intervals and carry out hypothesis tests
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The holy trinity

• There are three widely used approaches for carrying out
likelihood-based inference:

◦ Wald (Abraham Wald)
◦ Score (C.R. Rao)
◦ Likelihood ratio (Jerzy Neyman / Egon Pearson / Samuel

Wilks)
• We’ll be discussing all three approaches, and considering two

different scenarios:
◦ Simple null hypotheses: H0 : θ = θ0
◦ Composite null hypotheses: H0 : θ ∈ Θ0

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 3 / 28



Introduction
Methods
Example

Nuisance parameters

• The second case is particularly important in the multivariate
setting, as we are usually interested in testing something like
H0 : θj = 0, which means H0 : θ ∈ {θ : θj = 0}

• So, to be more specific, we won’t necessarily consider
composite null hypotheses in their full generality, but rather
focus on the setting where θ can be divided into parameters of
interest, θ1, and nuisance parameters, θ2, with θ = (θ⊤

1 θ⊤
2 )⊤,

with r denoting the length of θ1 and d− r the length of θ2

• Our composite tests, then, will be of the form H0 : θ1 = θ0,
with θ2 left unspecified by the null hypothesis

• (I’m describing these ideas in terms of tests, but everything
applies to confidence intervals as well)
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Wald approach

• The Wald approach is perhaps the simplest to understand
• It is based on the result that

√
n(θ̂ − θ∗) d−→ N(0,I−1(θ∗))

and simply uses the standard tools for the normal distribution
to carry out inference

• Proposition: If consistency assumptions (A)-(D)1 hold,

(θ̂ − θ∗)⊤In(θ∗)(θ̂ − θ∗) d−→ χ2
d

• This can be inverted to find confidence regions for θ

1If one assumes (A)-(C) only, the result still holds, but for the consistent
sequence of roots (which may or may not be the MLE); this applies to all of
the theorems in this lecture
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Which information?

• As alluded to previously, we could use either the Fisher or
expected information here and the result would still hold

• In fact, we have even more choices; all of the following hold:

(θ̂ − θ∗)⊤In(θ∗)(θ̂ − θ∗) d−→ χ2
d

(θ̂ − θ∗)⊤In(θ̂)(θ̂ − θ∗) d−→ χ2
d

(θ̂ − θ∗)⊤In(θ∗)(θ̂ − θ∗) d−→ χ2
d

(θ̂ − θ∗)⊤In(θ̂)(θ̂ − θ∗) d−→ χ2
d

(θ̂ − θ∗)⊤Vn(θ̂)(θ̂ − θ∗) d−→ χ2
d,

where Vn(θ) =
∑

i ui(θ)ui(θ)⊤

• In practice, Wald approaches typically use In(θ̂)
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Nuisance parameters

• Testing H0 : θ1 = θ0 is also rather straightforward with the
Wald approach

• Proposition: If (A)-(D) hold and θ0 = θ∗
1 (i.e., if H0 is true),

then
√
n(θ̂1 − θ0) d−→ N(0,V11),

where V11 = I11 is the (1,1) block of the inverse of I(θ∗)
• Again, recall that V−1

11 = I11 − I12I
−1
22 I21, so that

V−1
11 ⪯ I11 and V11 ⪰ I−1

11 ; the presence of unknown
nuisance parameters increases the variance of our estimator
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Wald confidence intervals

• If our parameter of interest is a scalar, then we have simple
closed-form expressions for confidence intervals:

θ̂j ± z1−α/2

√
Vn

jj(θ̂)

is an approximate 1 − α confidence interval for θj

• Again, this is not the same thing as

θ̂j ±
z1−α/2√
In

jj(θ̂)
;

this second approach is incorrect, as it fails to account for the
impact of nuisance parameters and produces confidence
intervals that are too narrow
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Remarks on the Wald approach

• The ease with which confidence intervals can be constructed
is the primary advantage of the Wald approach

• As we will see, confidence intervals are considerably more
cumbersome in the score and likelihood ratio approaches

• The primary disadvantage of the Wald approach is that it
tends to provide the least accurate approximation of the three
approaches
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Score approach: Simple null

• Next, let’s consider the score approach: as the name implies,
this method revolves around the score vector

• Proposition: If (A)-(C)2 hold,

u(θ∗)⊤I−1
n (θ∗)u(θ∗) d−→ χ2

d

• Again, we can use any consistent estimator of I(θ∗) in place
of the Fisher information; score approaches typically use
In(θ0) or In(θ0)

• In principle, this can be inverted to find a confidence region,
but in practice, doing so is usually not straightforward

2Don’t need (D) here since the MLE doesn’t appear
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Nuisance parameters

• What about testing H0 : θ1 = θ0?
• This is less straightforward than the Wald case
• We need to evaluate the score and information, but for what

value of θ?
• Setting θ1 = θ0 seems obvious, but for θ2, we are going to

have to maximize the likelihood under the restriction imposed
by H0
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Restricted MLEs

• Specifically, let us define the restricted, or constrained, MLE
θ̂2(θ0) as the value of θ2 that maximizes L(θ) under the
restriction that θ1 = θ0, with θ̂0 = (θ⊤

0 θ̂2(θ0)⊤)⊤

• The following lemma will prove useful to us (its proof is
essentially identical to the case for the unrestricted MLE θ̂)

• Lemma: If (A)-(D) hold and θ0 = θ∗
1, then

√
n(θ̂2(θ0) − θ∗

2) d−→ N(0,I−1
22 );

note that here we do have convergence to I−1
22 , not V22, as

under H0, we are not affected by uncertainty regarding θ1

• Note that this only works if H0 is true: if it isn’t, θ̂2(θ0) may
converge to something very different from θ∗

2
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Score test with nuisance parameters

• Theorem: If (A)-(D) hold and θ0 = θ∗
1, then

u1(θ̂0)⊤Vn
11(θ̂0)u1(θ̂0) d−→ χ2

r ,

where Vn = I−1
n

• In the special case where the parameter of interest is θj , we
have uj(θ̂0)

√
Vn

jj (θ̂0) .∼ N(0, 1)
• Unfortunately, inverting this test to obtain a confidence

interval is not trivial, as every time we change θ0, we would
need to re-solve for θ̂2(θ0)
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Remarks on the score approach

• The difficulty of obtaining confidence intervals is the biggest
drawback of the score approach

• Conversely, it is often the easiest test to carry out, which is its
biggest advantage

• In particular, we don’t even need to solve for the MLE in order
to carry out the test
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Example: Linear regression

• For example, consider the linear regression model
y ∼ N(Xβ, σ2I); for the purposes of this exercise, we’ll treat
σ2 as known

• Suppose we have fit a baseline model involving a number of
covariates that we know we want to adjust for, and are
considering including an additional predictor xj in the model

• The score test H0 : βj = 0 is

zj =
x⊤

j r

σ
√

x⊤
j xj − x⊤

j X(X⊤X)−1X⊤xj

,

where r is the vector of residuals from the baseline fit and
zj ∼ N(0, 1) under the null hypothesis
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Example: Linear regression (cont’d)

• In particular, note that the “expensive” part of this
calculation, X(X⊤X)−1X, only needs to be computed once,
and the rest of the calculations are simple

• This makes score tests very attractive if you are, say, carrying
out a genetic association study in which you want to adjust
for some baseline characteristics such as age, sex, etc., then
test for associations between a clinical outcome and hundreds
of thousands of genetic markers

• To apply the Wald or likelihood ratio tests, we would need to
fit hundreds of thousands of models; the score tests involve
dramatically less computational burden
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Likelihood ratio approach

• Finally, let’s consider the likelihood ratio approach
• Theorem: If (A)-(D) hold, then

2 log L(θ̂)
L(θ∗)

d−→ χ2
d

• Note that the likelihood ratio test does not involve calculating
any derivatives (score or information), only the likelihood
function itself
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LRT with nuisance parameters

• Like the score test, when nuisance parameters are involved we
must solve for restricted MLEs

• Theorem (Wilks): If (A)-(D) hold and θ0 = θ∗
1, then

2 log L(θ̂)
L(θ̂0)

d−→ χ2
r

• Again, this can be inverted to find confidence intervals for θj

(a root-finding problem), but this involves repeatedly
re-solving for θ̂0
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Example: Gamma distribution

• As an example of how all these tests work, let’s apply them to
the gamma distribution

• As you have already derived on assignment 8,

u =
[
n log β − nψ0(α) +

∑
log xi

nα/β −
∑
xi

]

In =
[
nψ1(α) −n/β
−n/β nα/β2

]

• Let’s derive confidence intervals for the rate parameter β (you
may recall that β∗ = 1 and β̂ = 1.66)

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 19 / 28



Introduction
Methods
Example

Wald approach

• First, the Wald approach
• The diagonal element of I−1(θ̂) corresponding to β is 0.118,

so an approximate 95% confidence interval is given by

θ̂2 ± z1−α/2

√
V22(θ̂) = (0.99, 2.33)

• Note that this is much wider than the incorrect interval we
get from just inverting I22(θ̂):

θ̂2 ±
z1−α/2√
I22(θ̂)

= (1.39, 1.93);

as we have said several times, this second interval does not
account for uncertainty in α
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Wald: Correct and incorrect intervals
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• Obtaining score intervals for β is considerably more
computer-intensive, as we must repeatedly solve for α̂(β), the
MLE of α under the constraint that the rate is equal to β

• The endpoints of the confidence interval, then, can be found
by finding the two solutions of

u2(α̂(β), β)2Vn
22(α̂(β), β) = χ2

1,1−α

• This yields the confidence interval (0.99, 2.33); not identical
to the Wald interval, but equal up to 2 decimal places

• Again, failing to account for uncertainty by using the MLE α̂
instead of the restricted MLE α̂(β) produces an interval that
is much too narrow: (1.39, 1.93)
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Likelihood ratio

• Similarly, finding the endpoints of the likelihood ratio
confidence interval involves finding the roots of

2{ℓ(α̂, β̂) − ℓ(α̂(β), β)} = χ2
1,1−α

• This yields the interval (1.07, 2.42)
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Likelihood ratio plot
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Quadratic approximation
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Visualization of all three methods
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Final remarks

• All three approaches are asymptotically equivalent; letting Wn

denote the Wald test statistic, Sn the score test statistic, and
LRn the likelihood ratio test statistic,

LRn = Wn + op(1)
LRn = Sn + op(1),

and indeed, all three approaches are potentially useful and
widely used, depending on the context

• However, this potentially gives the wrong impression that all
three approaches are equally accurate in terms of
approximation inference
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Superiority of the likelihood ratio approach

• This is not true – the likelihood ratio approach is the most
accurate of the three approaches

• This has been shown repeatedly in many theoretical and
simulation studies, but it is also intuitive

• The Score and Wald approaches depend on derivatives, and
thus, can change substantially if we reparameterize the model
(e.g., if we consider θ = log λ)

• In other words, the best-case scenario for Score and Wald is
that we find a normalizing transformation, in which case the
results are simply equivalent to the LR

• Conversely, Score and Wald can be much worse
approximations than LR if we choose a bad transformation
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