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Information inequality One dimension

Multiple dimensions

Introduction

e Today we will prove the information inequality, which
establishes a lower bound on the variability of an estimator

e This leads to the idea of an “efficient” estimator, as any
estimator that achieves this bound can be considered optimal

o We will then see that the MLE is asymptotically efficient, as

are Bayesian estimators, and discuss Bayesian asymptotics a
bit
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Information inequality One dimension

Multiple dimensions

Information inequality: 1D

o First, let's take a look at the information inequality in the
case of a scalar estimator

¢ Theorem (Information inequality): Let 4 be a statistic with
finite expectation g(#) = E4. Suppose
X1, Xo,..., X, ~ p(:|0*) and d/df can be passed under the
integral sign with respect to both [dP and [4dP. Finally,
suppose %, (0*) > 0. Then

Vy 2
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Information inequality One dimension

Multiple dimensions

RENMES

e Keep in mind here that p refers to the joint distribution of
X1, Xo,...,X,,; we are not assuming iid here but we are
assuming that the derivative can be passed inside the integral
with respect to this joint distribution

e Furthermore, note that this is not an asymptotic theorem — it
is an inequality that is true for all values of n (including
n=1)
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Information inequality One dimension

Multiple dimensions

Attainment

e Is it possible for estimators to achieve this bound? (i.e., to
have the minimum possible variance?)

e An interesting theorem due to Wijsman (1973) is that equality
is only possible in the information inequality if 4 is linearly
related to the score

e |n other words, the only situation in which the lower bound is
attainable (for all 6, for all n) is when #4 is the sufficient
statistic of an exponential family
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Information inequality One dimension

Multiple dimensions

Cramér-Rao lower bound

e The information inequality is often restated in terms of the
bias of an estimator 6 of

o Letting b(0) = g(0) — 0 denote the bias of §, and assuming we
have an iid sample, then the information inequality becomes

5o (L+0(67))?
e ey

or, in the case of an unbiased estimator,

1

) >
Vo = ng (%)

e In this form, the inequality is known as the Cramér-Rao lower
bound
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Information inequality One dimension

Multiple dimensions

RENMES

e Recall that the mean squared error of an estimator is

MSE = E{(d — 6*)%}
= Bias? + Var

e Thus, among unbiased estimators, the CRLB represents the
minimum possible MSE

e However, this requirement is rather artificial: it is often the
case that biased estimators can be constructed with a lower
MSE than the best unbiased estimator
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Information inequality One dimension

Multiple dimensions

Example #1

The CRLB is not always attainable
For example, if X; i N(p, 0?), the CRLB for o2 is 20 /n

It turns out that this bound is unobtainable if y is unknown;
all unbiased estimators have a higher variance than this

For example, letting s represent the usual unbiased estimator
of the variance,
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Information inequality One dimension

Multiple dimensions

Example #2

e Keep in mind also that the CRLB only applies when we can
pass the derivative under the integral

e One common model for which this cannot be done is
X, S Unif(0, 0)
In this case, one might think that the CRLB is #2/n

e However, § = (n+ 1) X()/n is an unbiased estimate of § with
A 62 62
Vo= — < —
n(n + 2) <%

The “real” CRLB here is not well defined
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Information inequality: Multiparameter

o Now, let’s prove the information inequality for the case of a
vector of parameters

¢ Theorem (Information inequality): Suppose
X1, X9,...,. X, i p(x]0*), with #,(6%) positive definite. Let
4 be an estimator with finite expected value g(). If
V2 f(x|0*) exists and can be passed under the integral sign
with respect to [ dP and [ AdP, then

V4 = Vg(67)" £, (67) 7 Vg(67)

e Recall that A = B means A — B is positive semidefinite
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Information inequalit ~ . .
q Y One dimension

Multiple dimensions

Special case: g(6) =0

e In the special case where we have iid data and an unbiased
estimator 0 of 8, we have the simple result that:

A 1
Vo - Ej(a*)—l,

the Cramér-Rao lower bound in d dimensions

o A related case: suppose we are estimating only a subset of 0,
say, 81, with remaining parameters so-called “nuisance
parameters”

e What is the impact on the CRLB?
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Information inequalit - : :
q Y One dimension

Multiple dimensions

Nuisance parameters

e A common notation convention when dealing with partitions
of the information matrix is to let #1; denote the (1, 1) block
of the information matrix, and #!! denote the (1,1) block of
F ! (and so on for other partitions, and for the observed
information)

e Using this notation, the CRLB for estimating 6y is F'!/n, as
opposed to the CRLB for estimating 87 in the case where 02
is known: F;'/n

e Personally, | don't like this notation and prefer 7" to denote
F 1 and V to denote Z~!, mainly because £!! tends to
cause some confusion as looking like an information, when it
is very much not an information of any kind
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Multiple dimensions

Information loss due to nuisance parameters

o Recall that the relationship between these two quantities is
given by the Schur complement, which we restate here in
terms of our new information matrix notation (for the sake of
compactness, I'm suppressing the dependence on 6 here):

V1t = F — F1a Iy For,
or, if you prefer the superscript notation,
(FN ™ = Fi — Fa Iy For;

recall that #y," is positive definite, so the term being
subtracted cannot be negative (F11 = ‘7/1{1)

e |n other words, J12J2_21J21 is the cost of not knowing -
when estimating 6 (i.e., the information we've lost)
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q Y One dimension

Multiple dimensions

Orthogonality
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Only if 12 = 0 do we suffer no information loss

This can indeed happen; when it does, the parameters 8, and
65 are said to be orthogonal

For example, consider the case where X; g N(p, 0?)

Here, z is unbiased for © and achieves the CRLB regardless of
whether we know o2 or not

Such situations, however, are more the exception than the rule
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Efficiency

Efficiency

The information inequality and CRLB are of somewhat limited
use in finite samples, since they are only achieved in special
cases

Reaching the CRLB asymptotically, on the other hand, is a
different matter, and a much more attainable goal for a

hardworking little estimator

Definition: Let X; id p(z|0*). Suppose a sequence of

estimates @, for O satisfies /n(6,, — 0) 4, N(0,3(0)). The
sequence is said to be asymptotically efficient if

3(0) = F71(0) for all 0.

While “asymptotically efficient” is a more accurate term, it is
common to refer to such estimators as “efficient”
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Efficiency

Efficiency and maximum likelihood

e As we have already shown, the MLE is asymptotically efficient
(under certain regularity conditions)

e Thus, the MLE is in some sense optimal: at least
asymptotically, no sequence of unbiased estimators can
improve upon the MLE's accuracy

e For a long time in statistics, it was thought that no biased
estimators could do better either; this belief, however, was
upended by JL Hodges
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Efficiency ici

Superefficiency

Suppose X; Y N(6,1) so that \/n(d — ) ~ N(0,1)
Consider the biased estimator
g [0 if 0] < n~1/4
U

Now, P{|4] < n='/4} — 1if = 0 and — 0 otherwise

Thus, /n(0 — ) i>N(O,v), where v =1if 0 #0and v =0
if0 =0
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Efficiency

Superefficiency (cont'd)

e |In other words, v improves upon the CRLB; a so-called
“superefficient” estimator

e |t's a pretty neat counterexample, although not necessarily a
serious challenge to likelihood theory, as it can be shown (Le
Cam, 1952) that the set of superefficient points always has
Lebesgue measure zero

e This is sort of like saying that the MLE achieves the optimal
variance almost everywhere, but this would only be a
meaningful statement with a Bayesian prior, as otherwise
there is no probability distribution associated with 6
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Efficiency Super ncy
Relative efficiency

Two Cauchy estimators

e To get a sense of why efficiency is a useful concept in terms of
understanding the performance of estimators, let's return to

our X; g Cauchy(0) example from the previous lecture

o Consider two potential estimators, the sample median 6 and
the “one-step” estimator where we solve the likelihood
equations using a Taylor series approximation about 6

e Now, it can be shown that
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Asymptotic relative efficiency
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Since 72 /4 = 2.47 > 2, we can now appreciate the purpose of
the one-step estimator: while both estimates are consistent,
the one-step estimator is more efficient

Definition: If \/n(f; — 0) - N(0,02) and

NOOEY) 4, N(0,03), the asymptotic relative efficiency
(ARE) of the two estimators is 02 /o2

For the Cauchy estimators, the ARE is 2.47/2 = 1.23

In other words, the median estimator requires approximately
23% larger sample size than the one-step estimator: we need
n = 123 observations with the median estimator to obtain the

same amount of information that the one-step estimator has
with n = 100
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Asymptotic relative efficiency: Tests

e This idea can be extended to testing as well

e Since the power of any reasonable test tends to 1 as n — oo,
one typically considers Hy : 0 =0y vs Hy : 0 =6y + A/\/n

e In this case, if /1 — ®(Aa; — 2(1_4)) and
B2 — ®(Aag — z(1_q)), where j3; is the power of test i, the
asymptotic relative efficiency of the two tests is (a1 /az)?

o Generally, if two statistical procedures have the same limit as
n1 — 0o and ny — 0o, then the ARE is the limit of the ratio
n1/ne; the estimation and testing definitions we have given
are special cases
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Asymptotic relative efficiency: Tests (cont'd)

o For example, when X; N(A/y/n,0?), the one-sample t-test

satisfies

B1 — (I)(A/O - Z(l—a))

while the Wilcoxon signed rank test satisfies

o — @ (%\/g - Z(l—a))

e Thus, the ARE is 7/3 = 1.05; when the data follows the
normal distribution assumed by the ¢-test, the Wilcoxon test
requires just 5% more data in order to achieve the same power
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Relative efficiency

Additional remarks
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If the distribution is not normal, then there is no upper bound
on the ARE of these two tests — one can always construct a
distribution such that the Wilcoxon approach is that many
times more efficient than a t-test

This example illustrates a common use of efficiency: there is
often a desire to develop robust nonparametric or
semiparametric methods that make less restrictive
assumptions than a parametric likelihood model, and efficiency
provides something of a gold standard to compare against
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Bernstein-von Mises Theorem

Bayesian efficiency

o We mentioned earlier that maximum likelihood estimation is
“optimal” in the sense of being asymptotically efficient, but
keep in mind that it is not a unique property — there may be
multiple efficient approaches

e For example, Bayesian methods are also asymptotically
efficient, as we are now going to see

e There are several versions of this theorem, as it is a problem
that has been tackled by many statisticians throughout the
years, beginning with Laplace, but the result is usually called
the Bernstein-von Mises theorem
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Bayesian asymptotics

Bernstein-von Mises Theorem

The two versions

e Broadly speaking, there are two main categories of
“Bernstein-von Mises Theorem's

e The first states that the posterior mean has the same limiting
distribution as the MLE
o This is, therefore, an entirely frequentist theorem — the fact
that Bayesian reasoning was used to obtain the estimator does
not really come into play
e The second states that the posterior density is approximately
normal with mean 6* and variance {n.#(6*)}~!

o This version better captures the spirit of Bayesian statistics, as
it pertains to the posterior, not to a sampling distribution
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Bernstein-von Mises Theorem

Regularity conditions

e An example of the first sort of theorem is the one given in
Lehmann’s Theory of Point Estimation (Theorem 8.3), which
he attributes to Peter Bickel

o We require the same regularity conditions as in the MLE case:

(1) Assumptions (A), (B), and (C) from the lecture on likelihood
consistency are met

e Since the posterior mean requires integrating over all values of
0, however, it is not enough to require likelihood conditions
only on a local neighborhood ®*; we need to ensure that the
likelihood behaves reasonably even at values of @ far from 0*

e Thus, we need some additional assumptions
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Bernstel on Mises, version 1
Bernstein-von Mises Theorem Bernstein-von Mises, version 2

Regularity conditions (cont'd)

(2) For all € > 0, there exist 6 > 0 such that in the expansion
00) =0(6%)+ (6 —0")"u(6*)—
3(0 —0")[Z(6") + R(67)](6 — %),
the probability of the event

sup ’%Rij(e)‘ > €
[|6—607*||<é

tends to 0 as n — oo for all ¢ and j

(3) For all € > 0, there exist § > 0 such that the probability of the
event

sup  1{(0) — £(6%)} < —¢
|6—6%(|>0

tendsto 1 as n — oo
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Bernstein-von Mises Theorem

Bernstein-von Mises Theorem

e Finally, we need two conditions on the prior (in particular, it
must have positive support for all 8)

(4) The prior density p(@) is continuous and positive for all 8 € ©
(5) The prior expectation exists: [||@||dP(0) < oo

o Theorem (Bernstein-von Mises): Let 6 denote the
posterior mean. If (1)-(5) hold, then

A

V(6 — 6*) L N(0, F71(6%)).
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Bernstein-von Mises Theorem Bernstein-von Mis

RENMES
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The result is fairly intuitive: unless the prior has ruled 68* out,
eventually we will have enough data that the likelihood
dominates the posterior and agrees with maximum likelihood

Obviously, this does not imply that Bayesian and frequentist
methods are equivalent (introducing a prior to improve
performance at small sample sizes is a major advantage of
Bayesian approaches), but it is reassuring to know that given
enough data, both schools of thought will agree on an answer
if they are working with the same likelihood model

This is a “global” Bernstein-von Mises; there are also “local”
versions in which we only integrate over a portion of the
parameter space to obtain a posterior mean
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Bernstein-von Mises Theorem Bernstein-von Mises, version 2

Convergence of the posterior

o Alternatively, we may consider the limiting behavior of the
posterior distribution

e However, the posterior distribution itself just converges to a
point mass at 0*

e To get a more interesting result, we can consider the posterior
distribution of \/n(6 — @), where 0 is the MLE
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Bernstein-von Mises Theorem

Convergence of the posterior (cont'd)

e What you will show (homework!) is that the posterior of the
“local” parameter § = /n(0 — ) converges N(0, F(6*)71)
in a sense that we will define shortly

e The takeaway is that the posterior distribution of € can be
approximated as:

Vn( —0)|x ~ N(0, #(6")7),

or
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Idea behind the proof
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Proving this result, however, is tricky in the sense that a
posterior is a conditional distribution — i.e., a random
distribution, a complication that did not arise in our
consideration of the distribution of the MLE

To get around this, LeCam (1953) employed the clever trick
of considering the posterior ratio p(8 4 &//n|x)/p(0x),
showing that it converged to the kernel of a N(0, #(6*)~1)
distribution

Assuming we can integrate both sides to get convergence of
the normalizing constants, we therefore have convergence of
the posterior
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Bernstein-von Mises theorem, version 2

Theorem (Bernstein-von Mises): Suppose p(6) is continuous
with p(@) > 0 for all @ € ©. Under regularity conditions (A)-(D),

p(B + 8//mlx) /p(B]x) =5 exp{—L57.F(6%)8}.
If, in addition,
[ 90+ 8/valx) p(Blx) d5 5 [ exp(~157.7(6)8) b,
then

/|p5|x 8)| d& 2 0,

where ¢(-) is the N(0, £ (0*)~!) density
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Bernstein-von Mises Theorem

RENMES

e The final line of the theorem follows from a result known as
Scheffé’s useful convergence theorem: if x,, —— x, x,, = 0,
and Ex,, — Ex < oo, then x,, — x with r = 1

e This allows us to conclude not merely pointwise convergence
of the densities — the total difference of the densities,
integrated over all values of the parameters, goes to zero

e This is known as the total variation distance, an alternative to
the KL divergence:

[ @) = (@) do

e The end result is a nice theoretical justification for a variety of
posterior approximation techniques (Laplace approximation,
variational inference)
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