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Introduction

• Today we will begin to prove the important asymptotic
properties of maximum likelihood estimates

• We begin with consistency: θ̂
P−→ θ∗ (this is weak

consistency; MLEs are also strongly consistent under the same
conditions, but we’ll only concern ourselves with proving the
weak case)

• Broadly speaking, we’ll break this up into two cases: where
the likelihood is unimodal and where it may not be (the latter
case being considerably more complicated as there could be
many local maxima, only one of which being the actual MLE)
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An inconsistent MLE

• To get a sense of the problems that arise when the likelihood
can have multiple peaks, consider the following model1:

Xi
iid∼ 1

2N(0, 1) + 1
2N(θ, exp(−2/θ2));

in words, an equal mixture of a standard normal and a normal
distribution whose variance goes to zero (fast!) as the mean
goes to zero

• Let’s generate some samples from this model with θ = 2 and
take at a look at its likelihood and what happens to it as
n → ∞

1This example comes from Radford Neal
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An inconsistent MLE: n = 10
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An inconsistent MLE: n = 40
As n → ∞, it is increasingly certain that a giant spike will occur
near zero: θ̂

P−→ 0 ̸= 2
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Unimodal functions

• To rule out such situations, let’s restrict attention to unimodal
likelihoods, starting with a definition of “unimodal”

• In one dimension, a function f is unimodal if there exists a
point m such that f is monotonically increasing for x ≤ m
and monotonically decreasing for x ≥ m

• Extending to multiple dimensions, a function f : Rd → R is
unimodal if there exists a point m such that for all ∥u∥ = 1,
f(m + xu) is a monotone decreasing function of x

• A point m ∈ Rd is a strict local maximum of a function
f : Rd → R if there exists a neighborhood Nr(m) such that
f(m) > f(x) for all x ∈ Nr(m) with x ̸= m

• A unimodal function has exactly one such point, and that
point is the global maximum
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Sufficient conditions for unimodality

• Proving that a function is unimodal is typically challenging
unless we can resort to derivatives

• For any function that is twice differentiable, a sufficient (but
not necessary) condition for unimodality is that its Hessian
matrix H(x) = ∇2f(x) is negative definite for all x

• In the likelihood context, this means that the information
matrix is positive definite for all θ
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Log concavity

• Furthermore, if its Hessian is negative definite at all points,
the function is concave

• In the likelihood context, then, if the information matrix is
positive definite for all θ, then its log-likelihood is a concave
function

• Such probability models are said to be log-concave
• Many common parametric models, including everything in the

exponential family, are log-concave
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Kullback-Leibler divergence

• Next, we need something like a “norm” that measures the
distance between two probability distributions

• Definition: For two distributions p and q, the
Kullback-Leibler divergence (commonly abbreviated KL
divergence, also known as KL information) is defined as

KL(p∥q) = Ep log p

q
=

∫
log p(x)

q(x)dP (x),

where the integrand is defined to be +∞ if q(x) = 0, p(x) > 0
and 0 if p(x) = 0

• Essentially, the KL divergence is measuring the ability of the
likelihood ratio to distinguish between two distributions
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Entropy

• The KL divergence is related to a
concept in physics and information
theory called entropy, which is defined
as

H(p) = −E log p(X)

• Entropy measures the degree of
uncertainty in a distribution, with the
uniform and constant distributions
representing the extremes

• Note that
H(p) = −KL(p∥u) + Const, where u
is a uniform distribution

For example, in the
Bernoulli distribution:
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Gibbs’ inequality

• Note that the KL divergence is not symmetric: it is measuring
the distance from distribution p to distribution q, not the
other way around2

• Furthermore, the KL divergence does not satisfy the triangle
inequality, so is not a norm; hence the term “divergence” as
opposed to “distance”

• However, it does satisfy positivity
• Theorem (Gibbs’ inequality): For any two distributions p

and q, KL(p∥q) ≥ 0. Furthermore, KL(p∥q) = 0 if and only if
p = q almost everywhere.

• This theorem is also known as the Shannon-Kolmogorov
information inequality

2the symmetric version 1
2 KL(p∥q) + 1

2 KL(q∥p) is known as the
Jensen-Shannon divergence
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Consistency

• So, what does this have to do with consistency?
• By the WLLN, we have

1
n

log L(θ)
L(θ∗) = 1

n

∑
i

log Li(θ)
Li(θ∗)

P−→ −KL(θ∗∥θ),

which is less than 0 unless p(x|θ) = p(x|θ∗) almost
everywhere

• In other words, P{L(θ) < L(θ∗)} → 1 for all θ ̸= θ∗
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Identifiability

• More quantitatively, the likelihood ratio converges to zero
exponentially fast, with a rate given by the KL divergence

• Again, the only condition here is that we do not have
p(x|θ) = p(x|θ∗) almost everywhere; this is known as
identifiability and if it is violated, the models p(x|θ) and
p(x|θ∗) are said to be not identifiable

• For example, suppose x1i
iid∼ N(µ + α, 1) and

x2i
iid∼ N(µ + β, 1); this is not identifiable because

{µ, α, β} = {0, 2, 4} specifies the same distribution as
{µ, α, β} = {3, −1, 1} (along with infinitely many other
combinations)
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Consistency?

• Are we done? Have we established consistency?
• In one dimension, yes!
• Theorem: Let {p(x|θ) : θ ∈ Θ ⊂ R} be a probability model

that is unimodal (with respect to θ) and identifiable, and
suppose Xi

iid∼ p(x|θ∗). Then θ̂
P−→ θ∗.

• The argument also works if the parameter space Θ is finite
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Multiple dimensions

• Unfortunately, this argument breaks down even with d = 2:

θ*

θ1

θ2

• To apply our earlier argument, we need to show that
P{L(θ∗) > L(θ)} → 1 for the entire ring; use Gibbs’
inequality all we like, but it’s no help – the ring contains an
infinite number of points
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Consistency: Assumptions

What assumptions do we need?
(A) IID: X1, . . . , Xn are iid with density p(x|θ∗).
(B) Interior point: There exists an open set Θ∗ ⊂ Θ ⊂ Rd that

contains θ∗.
(C) Smoothness: For all x, p(x|θ) is continuously differentiable

with respect to θ up to third order on Θ∗, and satisfies the
following conditions:

(i) Derivatives up to second order exist and can be passed under
the integral sign in

∫
dP (x|θ).

(ii) The Fisher information I(θ∗) is positive definite.
(iii) The third derivatives are bounded: there exists M(x)

satisfying EM(X) < ∞ such that
supθ∈Θ∗

∣∣∇3ℓ(θ|x)jkm

∣∣ ≤ M(x) for all j, k, m.
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Consistency: Assumptions (cont’d)

• To avoid the possibility of multiple local maxima, I’ll also add
the following assumption:

(D) Log-concavity: The Fisher information I(θ) is positive
definite for all θ ∈ Θ, and Θ is a convex set

• Obviously, Assumption (D) implies much of assumption (C); I
give them as separate assumptions here since assumptions
(A)-(C) are standard, while assumption (D) is “extra”

• Next time, we will consider what happens when we remove it,
retaining only (A)-(C)

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 17 / 25



Preliminaries
Consistency

Regularity conditions
Consistency of the MLE

Remarks: IID

• Keep in mind that Condition (C) describes what happens for a
single observation, whereas Condition (A) describes how these
observations are related to each other (iid)

• We are covering the IID case because it is the obvious place
to start, but keep in mind that IID is not at all a necessary
condition: the theoretical properties we will prove apply to
many non-IID settings (likelihood would not be terribly useful
if it only worked in IID settings)

• However, additional conditions may be required in non-IID
cases, as we saw in the lecture on the Lindeberg-Feller CLT
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Remarks: C(i)

• This condition is necessary in order to ensure Eu(θ∗) = 0 and
Vu(θ∗) = E(I); some authors assume this directly instead

• Whether we can pass derivatives under the integration sign is
governed by the DCT; in this case, it requires that

|p(x|θ1) − p(x|θ2)|
∥θ1 − θ2∥

≤ g(x, θ∗)

for every x and for all θ1, θ2 ∈ Θ∗ and that g(x, θ∗) is
integrable (this is for ∇; the condition for ∇2 is similar)

• This condition (known as a Lipschitz condition) limits how
much the derivative can change within Θ∗ (alternatively, we
could require ∇θp(x|θ) to be continuous over Θ∗)
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Remarks: C(ii) and C(iii)

Note that C(ii) applies to the Fisher information, while C(iii)
applies to the derivative of the observed information – this is
important!

• The observed information could randomly fail to be positive
definite; this does not cause problems (well, not
asymptotically)

• Meanwhile, we need a bound on the observed derivatives,
which can include x; this means that our bound M(x) must
be allowed to be random
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Remarks: Continuity of information

• Although not explicitly stated, the above conditions also
ensure that both the observed information and Fisher
information are continuous functions of θ

• All differentiable functions are continuous; thus, by requiring
the third derivative to exist, we require that the second
derivative (the observed information) is continuous (by the
same reasoning, the score must be continuous)

• Also, if the third derivative is bounded, then the first and
second derivatives are bounded; this allows us to use the
dominated convergence theorem and

lim
θ→θ∗

I(θ) = I(θ∗)
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Remarks: Uniform continuity

• In fact, these conditions ensure that the observed information
is uniformly continuous over Θ∗

• In other words, we can find a single δ such that I(θ) is close
to I(θ0) for any θ, θ0 ∈ Θ∗ whenever ∥θ − θ0∥ < δ

• Uniform continuity is important because it provides uniform
convergence of the observed information:

1
nI(θ̂) P−→ I(θ∗)

as θ̂
P−→ θ∗; note that we can’t simply use the law of large

numbers or the continuous mapping theorem here because
both the information and the point at which the information
is being evaluated are changing simultaneously
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Consistency of the MLE

• OK, let’s now prove the following important theorem
• Theorem (Consistency of the MLE): Suppose assumptions

(A)-(D) are met. Then the maximum likelihood estimator θ̂ is
consistent:

θ̂
P−→ θ∗.

• Connecting this to our earlier remarks on uniform convergence
towards the beginning of the course, note that pointwise
convergence of the likelihood ratio around the boundary of Θ∗

was not enough; we needed uniform convergence over the
entire boundary

Patrick Breheny University of Iowa Likelihood theory (BIOS 7110) 23 / 25



Preliminaries
Consistency

Regularity conditions
Consistency of the MLE

Alternative proof

• It is possible to prove consistency of the MLE under
considerably weaker conditions than this; in particular,
without any requirements on differentiability

• This was the approach taken by Wald (1949), who used a
compactness argument, which involves the existence of finite
subcovers of open sets and is considerably more abstract than
the approach we have taken here

• Our approach follows that of Cramér (1946), and is more
common in the literature (or at least, the literature I read)
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Convergence in non-standard settings

• Because of this, however, it is possible for the MLE to be
consistent even in situations that do not meet our regularity
conditions

• For example:
◦ Xi

iid∼ Bern(θ); θ̂
P−→ θ∗ even if θ∗ = 1 (on the boundary)

◦ Xi
iid∼ Laplace(θ); θ̂

P−→ θ∗ even though likelihood not
differentiable at θ∗

◦ Xi
iid∼ Unif(0, θ); θ̂

P−→ θ∗ even though likelihood isn’t even
continuous at θ∗ (let alone differentiable)
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