
Likelihood Theory and Extensions (BIOS:7110)
Breheny

Assignment 6

Due: Monday, October 21

1. Exponential dispersion. For the exponential dispersion family,

E(s) = ∇ψ(θ)
V(s) = ϕ∇2ψ(θ).

In this problem, we will derive these results using two different approaches. Note that the first (using
properties of the score) is obviously much easier if you’ve already derived those properties, but it
relies on doing quite a bit of work to prove those theorems in the first place.

Both approaches require the ability to change the order of derivation and integration: this is always
justified for exponential families (you do not need to show it). Note that in part (a), you are starting
with the derivative inside the integral and moving it out, while in part (b), you are starting with the
derivative outside the integral and moving it in.

Just do this for a single observation. Nothing changes when additional observations are involved.

(a) Derive the above results using the expectation and variance of the score (very simple, one or
two lines).

(b) Derive the above results starting from the fact that

exp{ψ(θ)/ϕ} =

∫
exp{s⊤θ/ϕ}dP (x|ϕ),

then taking first and second derivatives (this approach is longer).

2. Completing the square.

(a) Show that if A is a symmetric, positive definite matrix, then any expression of the form

x⊤Ax+ b⊤x+ C

can be rewritten as

(x−m)⊤A(x−m) +D;

provide expressions for m and D in terms of A, b, and C.

(b) Using the above result, show that for any likelihood that allows a second-order Taylor series
expansion, we can approximate ℓ(θ|x) with the log-likelihood from a multivariate normal dis-
tribution:

y
.∼ N(θ, I−1),

where y = θ̃ − H−1u = θ̃ + I−1u is the “pseudoresponse” and u and I are the score and
information evaluated at θ̃, the point about which we are taking the Taylor series approximation.

Note here that u is the random variable; in reality, the point θ̃ that we take the approximation
about is typically random as well, but this is not accounted for here. In particular, if θ̃ is the
MLE, then y = θ̂ and we have the typical Wald approximation.
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3. Observed and Fisher information in the exponential family. Suppose that x1, . . . , xn
iid∼ F , where F

is a distribution in the exponential family. Show that for all θ,

In(θ) = In(θ)

where θ is the natural parameter.

4. Quadratic approximation for the Gamma distribution. The pdf for the Gamma distribution with
shape parameter α and rate parameter β is given by

f(x|α, β) = βα

Γ(α)
xα−1e−βx.

Generate a random sample of size 50 from this distribution using the following code:

set.seed(1)

x <- rgamma(50, shape=2, rate = 1)

To do this problem, please take note of the following information. The derivative of the log of the
gamma function is known as the digamma function, usually denoted ψ0(α):

ψ0(α) =
d
dα log Γ(α).

The second derivative of the log of the gamma function is known as the trigamma function, and
usually denoted ψ1(α):

ψ1(α) =
d2

dα2 log Γ(α).

These functions are available in R and called digamma() and trigamma(), respectively.

(a) Derive the score vector for θ = (α, β).

(b) Solve for the MLE. This is only available in partially-closed form. To find the MLE, solve for
β̂ in terms of α̂ and use this to derive a one-dimensional score function for α, then use the
uniroot() function to obtain a numerical answer for α̂.

(c) Derive the information matrix.

(d) Plot the two-dimensional 95% confidence region based on the quadratic/normal approximation
at the MLE. On the plot, label the true value of (α, β). You can do this however you’d like, but
my suggestion is to use the ellipse package.

(e) Overlay the gamma densities evaluated at three values of θ: the true value θ∗, the MLE θ̂, and
θ̃ = (3, 1). Note that θ̃ is closer to the MLE than θ∗ is, in the sense that ∥θ̃ − θ̂∥ < ∥θ∗ − θ̂∥,
and yet (if you did the earlier parts correctly) θ∗ is inside the confidence region while θ̃ is not.
What is going on here? Comment briefly on this “paradox”.
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