
Likelihood Theory and Extensions (BIOS:7110)
Breheny

Assignment 4

Due: Monday, September 30

1. Gaussian graphical model. As we discussed in class, the precision matrixΘ is of interest as it describes
conditional independence relationships. One way to estimate Θ is Θ̂ = S−1, where S is the sample
variance-covariance matrix (throughout this problem, you may assume that both S and Σ are full
rank). Here, we consider a different approach.

(a) Suppose we partition Θ so that the top left corner is isolated (i.e., the top left corner of the
partition is 1 × 1 and the bottom right is (d − 1) × (d − 1), where d is the dimension of the
multivariate distribution). Show that

−θ21/θ11 = Σ−1
22 Σ21,

where Σ is the variance-covariance matrix, partitioned in the same way as Θ. Hint: use the
definition of a matrix inverse.

(b) Now consider the conditional distribution of x1|x2. Show that if x is multivariate normal, then
the conditional distribution of x1|x2 can be written as

X1 = α+ x⊤
2β + ε,

where ε ∼ N(0, σ2). Express β and σ2 in terms of the precision matrix Θ.

(c) Part (b) suggests that we can estimate Θ using linear regression. Simulate some multivariate
normal data using the following code:

set.seed(1)

n <- 100

A <- rnorm(n)

B <- A + rnorm(n)

C <- B + rnorm(n)

D <- B + rnorm(n)

X <- cbind(A, B, C, D)

S <- cov(X)

Then regress each element of x on the others. We are going to use these regression fits to
estimate Θ; however, let us carry out a simple model selection procedure first, in which we drop
any covariates that are not significant at the α = 0.05 level. Then refit the model with only the
significant covariates, and use β̂ and σ̂2 to fill in the appropriate elements of Θ; set βj = 0 if

the term was not included in the model. As an answer, you only need to provide Θ̂, not the full
summary of all the regression fits.

(d) Does your estimate of Θ from (c) reflect the correct conditional independence relationships
among A, B, C, and D? Comment briefly.

(e) Letting x⊤ = [ABC D], show that the data generating mechanism of the above code results in
x having a multivariate normal distribution, and calculate the true precision matrix Θ∗.
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(f) We now have two estimators for Θ: S−1 and the estimator from part (c). Which one is more
accurate (for this particular data set)? Quantify the overall accuracy using ∥Θ̂−Θ∗∥F .

(g) One downside of (c) is that it produces an asymmetric estimate Θ̂. One simple remedy is to

use Θ̃ = 1
2Θ̂+ 1

2Θ̂
⊤
instead. Does this symmetrized estimate improve accuracy?

2. Power calculation using the noncentral χ2 distribution. Suppose there is a latent random variable of
interest Z that is continuously distributed between 0 and 1, but we observe only which of 10 bins
it falls into: (0, 0.1), (0.1, 0.2), . . . , (0.9, 1.0). Thus, we observe x, a 10-dimensional random vector of
counts corresponding to the bins, with n denoting the total count. This problem involves attempting
to test the null hypothesis that all bins are equally likely by assuming that x (approximately) follows
a multivariate normal distribution.

(a) Using the mean and variance of a multinomial distribution under the null, provide a function
of x that follows an approximate χ2 distribution (i.e., that would follow a χ2 distribution if x
were multivariate normal with the specified mean and variance).

(b) Now suppose that Z ∼ Beta(1, 2). Create a plot overlaying two beta distributions: this one and
the one corresponding to the null hypothesis.

(c) Under the alternative distribution specified in (b), the quantity from (a) will no longer follow
an ordinary χ2 distribution, but instead a noncentral χ2 distribution. Create a plot overlaying
two χ2 densities, one of the null hypothesis and the other with a noncentrality parameter of 10.
Use the number of degrees of freedom appropriate to this problem.

(d) Derive the noncentrality parameter for the distribution of x under the alternative hypothesis.
Note that there is a problem with this calculation: the alternative hypothesis affects both the
mean and the variance. For the purposes of this calculation, only account for its effect on
the mean – assume that the variance is unchanged. Implement this calculation in a function,
ncp(n); turn this code in separately as a .R that I can run.

(e) Create a plot of n versus power (assuming an α = 0.05 significance threshold), where n ranges
from 10 to 100. Note that this calculation uses both the null distribution from (a) and the
alternative distribution you derived in (d).

(f) In the power calculation above, there are two potential issues: (a) the true distribution is multi-
nomial, not multivariate normal, and (b) we ignored the impact of the alternative distribution
on variance when calculating the noncentrality parameter. Carry out a simulation to compare
the true power to our approximation. Draw samples of size n = 50 from the multinomial dis-
tribution and carry out the χ2 test that you derived above (don’t “correct” for continuity).
Calculate the average power over N = 10, 000 replications.

(g) Briefly, how do these two approaches compare? In particular, suppose you were had to perform
a power calculation like this for a real-world project: which approach would you use? Why?

3. Bounded in probability vs convergence in distribution. Prove that if a sequence of random variables
Xn converges in distribution, then Xn is bounded in probability. Note: this is true for random vectors
as well, of course, but main ideas of this proof come across more clearly in the scalar case.

4. Convergence in quadratic mean and probability. This problem involves proving the theorems from the
slide titled “Convergence in mean vs convergence in probability” from the “Modes of convergence”
lecture. Hint: Markov’s inequality.

(a) Prove that if xn
r−→ x for some r > 0, then xn

P−→ x.

(b) Prove that if a ∈ Rd, then xn
qm−→ a if and only if Exn → a and Vxn → 0d×d.
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