Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 3

Due: Monday, September 23

- 1. Matrix square root. Let A be a symmetric, positive definite matrix with eigendecomposition $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$.
 - (a) Find $\mathbf{A}^{1/2}$ and show that it is a matrix square root.
 - If A was not symmetric, would your derivation still work?
 - If A was positive semidefinite, would your derivation still work?
 - (b) Find $\mathbf{A}^{-1/2}$ and show that it is both the square root of \mathbf{A}^{-1} and the inverse of $\mathbf{A}^{1/2}$.
 - If A was not symmetric, would your derivation still work?
 - If A was positive semidefinite, would your derivation still work?
 - (c) From (b), it follows that $\mathbf{A}^{-1/2}\mathbf{A}\mathbf{A}^{-1/2} = \mathbf{I}$. If \mathbf{A} is not full rank, but we take generalized inverses where needed, what does $\mathbf{A}^{-1/2}\mathbf{A}\mathbf{A}^{-1/2}$ equal?
- 2. Trace and eigenvalues. Let **A** be a $d \times d$ symmetric matrix. Prove that $tr(\mathbf{A}) = \sum_{i} \lambda_{i}$, where $\{\lambda_{i}\}_{i=1}^{d}$ are the eigenvalues of **A**.
- 3. Projection matrices and rank. A matrix \mathbf{P} satisfying $\mathbf{P} = \mathbf{PP}$ is known as an *idempotent matrix*, or *projection matrix*. Below, suppose that \mathbf{P} is a symmetric projection matrix.
 - (a) Show that every eigenvalue of **P** must be either 1 or 0.
 - (b) Show that the rank of **P** equals the trace of **P**.
- 4. Logistic regression. The logistic regression model states that Y_i is equal to 1 with probability π_i and 0 otherwise, with π_i related to a set of linear predictors $\{\eta_i\}$ by the following model:

$$\log \frac{\pi_i}{1 - \pi_i} = \eta_i \quad \text{for } i = 1, 2, \dots, n$$
$$\boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$$

where $\eta \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$, and **X** is an $n \times d$ matrix. For (b)-(d), express your answer in vector/matrix notation, not as a collection of scalar terms (i.e., something like $\mathbf{a} + \mathbf{b}$, not $z_1 = 1, z_2 = 3, \ldots$).

- (a) Let ℓ_i denote the contribution to the log-likelihood from observation *i*. Find the partial derivative of ℓ_i with respect to η_i . Simplify your answer as much as possible.
- (b) Let $\ell : \mathbb{R}^n \to \mathbb{R}$ denote the log-likelihood as a function of the linear predictors η . Find $\nabla_{\eta} \ell$.
- (c) Find $\nabla_{\beta} \eta$.
- (d) Find $\nabla_{\beta} \ell$.
- 5. *Exponential Taylor series.* Note: (b) and (c) are not trick questions; they take little effort to derive, but the results are useful to know.

(a) Show that for any x,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Note: one can partially prove this using the Poisson distribution, but this proof would only work for x > 0.

- (b) Starting with the result in (a), derive the infinite series for e^{ax} .
- (c) Starting with the result in (a), derive the infinite series for b^x , where b > 0.
- (d) Let $f : \mathbb{R}^d \to \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x}) = \exp(\mathbf{a}^{\mathsf{T}}\mathbf{x})$ about $\mathbf{x} = \mathbf{0}$? Give both the *o*-notation and Lagrange forms.
- (e) Suppose $\mathbf{a} = \begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ and $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. Find the point $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.