Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 2 Due: Monday, September 16

- 1. Vector norms.
 - (a) Show that $\|\cdot\|_2$ is a norm.
 - (b) Show that $\|\cdot\|_{\infty}$ is a norm.
 - (c) Let $\|\cdot\|_{1/2}$ denote the function of **x** you would obtain by using p = 1/2 in the definition of an L_p norm. Is $\|\cdot\|_{1/2}$ a norm? Why or why not?
- 2. Uniform convergence. For each of the following sequences, determine the pointwise limit of $\{f_n\}$ and decide whether $f_n \to f$ uniformly on the set given or not. You must justify your conclusion don't just say uniform/not uniform.
 - (a) $f_n(x) = \sqrt[n]{x}$ on [0, 1].
 - (b) $f_n(x) = e^x / x^n$ on $(1, \infty)$.
 - (c) $f_n(\mathbf{x}) = n^{-1} \exp\{-\|\mathbf{x}\|^2\}$ on \mathbb{R}^d .
- 3. Equivalence of norms and continuity. Suppose that $f : \mathbb{R}^d \to \mathbb{R}$ is continuous with respect to the L_1 norm at a point **p**. Show that f is also continuous with respect to the L_2 norm at point **p**.
- 4. O-notation proofs. Prove the following results:

(a)
$$O(1)o(1) = o(1)$$
.

- (b) $\{1 + o(1)\}^{-1} = O(1).$
- (c) $o\{O(1)\} = o(1)$.

Remarks:

- Part (b) is trivial if you use properties of limits. For the purposes of this problem, however, prove the result using only the definition of *o* and *O*. I realize that a simpler proof exists, but I consider the longer proof quite instructive.
- In part (c), you cannot use the result $o(r_n) = r_n o(1)$. This result is a consequence of the results in part (a) and part (c); using it would be circular logic.
- 5. The Riemann-Stieltjes Integral. Suppose μ is a bounded, nondecreasing function on [a, b] and that μ is continuous at a point $x_0 \in [a, b]$. Further suppose that $g(x_0) = 1$ and g(x) = 0 if $x \neq x_0$. Prove that $\int g d\mu = 0$. Hint: Show that for any $\epsilon > 0$, we can find a partition P such that $0 \leq U(P, g, \mu) < \epsilon$.