
Likelihood Theory and Extensions (BIOS:7110)
Breheny

Assignment 12

Due: Wednesday, December 11

1. Marginal likelihood for linear mixed models. This question deals with the mixed model discussed in
class during the “Marginal likelihood” lecture, in which paired observations share a random intercept

αi, with the assumption that αi
iid∼ N(µ, τ2).

(a) Given estimates µ̂ and β̂, derive estimators for σ2 and τ2. Provide specific formulas, introducing
notation as needed. If you introduce a symbol, please define it clearly. The estimators σ̂2 and
τ̂2 can be the maximum likelihood estimators, but do not have to be.

(b) Write a function, paired_lmm(X, y), that fits this linear mixed model. For the purposes of this
assignment, your function may assume that consecutive observations are paired. The function
should work as follows (some code to simulate paired data is provided; here β has dimension 2
but your function should work for any dimension):

n <- 100

X <- cbind(runif(n*2), runif(n*2))

u <- rep(rnorm(n), each=2)

y <- rnorm(n*2, X[,1]+u)

paired_lmm(X, y)

The function should return a named list of:

� mu: µ̂

� beta: β̂

� sigma: σ̂

� tau: τ̂

� info: The information matrix for the fixed effects (µ and β)

Hint: To set up a block diagonal matrix, you may wish to use the bandSparse function from
the Matrix package. For the specific covariance structure in this problem, the following code
works:

V <- bandSparse(n*2, k=0:1,

diagonals=list(rep(sig^2+tau^2, n*2),

c(rep(c(tau^2, 0), n), 1)),

symmetric=TRUE)

2. Penalized logistic regression. Suppose we have trios of binary outcomes Yi1, Yi2, Yi3 and we wish to
fit the probability model

log
πij

1− πij
= αi + xijβ,

where πij = P(Yij = 1); in other words, each trio has its own intercept, but we assume a common
effect for the covariate x. We have seen that maximum likelihood with so many parameters is
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often inaccurate; thus, consider the penalized logistic regression model in which we estimate α, β by
minimizing the negative log-likelihood from the traditional logistic regression model plus the penalty

p(α) =
λ

2

n∑
i=1

α2
i ;

in other words, we apply a ridge penalty to the {αi}ni=1 parameters, but no penalty to β.

(a) Derive the penalized score and information (i.e., the first and second derivatives of the objective
function).

(b) Describe an algorithm to obtain the penalized MLE β̂. There are multiple acceptable answers,
but please keep your answers consistent; whatever algorithm you describe in (b), you should
implement in (c).

(c) Implement this algorithm to obtain both the penalized MLE and Wald test for H0 : β = 0 using
the penalized information. Generate data using this code:

set.seed(1)

n <- 30

m <- 3

x <- runif(n*m)

u <- rep(rnorm(n, sd=2), each=m)

y <- rbinom(m*n, size=1, prob=binomial()$linkinv(x + u))

You do not need to turn in your code – just report the estimate and p-value when λ = 1.

(d) Carry out a simulation in which you generate N = 1, 000 independent data sets according to
the mechanism given above. For each data set, fit a penalized logistic regression model these 51
different values of λ:

lam <- exp(seq(log(0.25), log(3), len=51))

Finally, produce a plot with λ on the horizontal axis and the mean squared error of β̂(λ) on
the vertical axis. Comment on the figure and what it tells you about how penalized logistic
regression might compare to other methods for this analyzing this data.
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