Transformations

Patrick Breheny

September 26

Patrick Breheny

University of Iowa Likelihood Theory (BIOS 7110)

Introduction

- It is often the case in statistics that one knows something about the convergence of \mathbf{x}_n , but then we want to know something about the convergence of some function of the random vector $g(\mathbf{x}_n)$
- Today, we'll go over three useful tools for drawing these kinds of conclusions
 - The continuous mapping theorem
 - Slutsky's theorem
 - The delta method

Continuous mapping theorem

- The continuous mapping theorem is a simple, but very useful result
- It says that if $\mathbf{x}_n \to \mathbf{x}$ (in any sense), then $g(\mathbf{x}_n) \to g(\mathbf{x})$ (in the same sense) if g is continuous
- Theorem (continuous mapping): Let *g* : ℝ^{*d*} → ℝ^{*k*} be continuous almost everywhere with respect to **x**.

(i) If
$$\mathbf{x}_n \xrightarrow{d} \mathbf{x}$$
, then $g(\mathbf{x}_n) \xrightarrow{d} g(\mathbf{x})$
(ii) If $\mathbf{x}_n \xrightarrow{P} \mathbf{x}$, then $g(\mathbf{x}_n) \xrightarrow{P} g(\mathbf{x})$
(iii) If $\mathbf{x}_n \xrightarrow{as} \mathbf{x}$, then $g(\mathbf{x}_n) \xrightarrow{as} g(\mathbf{x})$

Example #1

- The continuous mapping theorem is extremely useful and allows formal justification of all kinds of things seem obvious, such as: we should be able to "square both sides" of a convergence statement
- For example, suppose $Z_n \xrightarrow{d} N(0,1)$; then we immediately have $Z_n^2 \xrightarrow{d} \chi_1^2$
- Again, the key requirement is continuity; if the function isn't continuous, all bets are off
- For example, suppose $X_n \xrightarrow{\mathbf{P}} 0$, and

$$g(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases} ;$$

$$g(0) = 0$$
, but $g(X_n) \xrightarrow{\mathrm{P}} 1$ if X_n is continuous

Example #2

- Note that only continuity at 0 was relevant in that last example, since P(X = 0) = 1
- By contrast, if $X_n \xrightarrow{P} 1$ or $X_n \xrightarrow{d} N(0,1)$, then the CMT would hold since g(x) would be continuous almost everywhere
- As a multivariate example, we proved the central limit theorem

$$\sqrt{n}(\mathbf{x}_n - \boldsymbol{\mu}) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(\mathbf{0}, \boldsymbol{\Sigma});$$

by the continuous mapping theorem, we immediately have the corollary

$$\sqrt{n} \boldsymbol{\Sigma}^{-1/2}(\mathbf{x}_n - \boldsymbol{\mu}) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(\mathbf{0}, \mathbf{I})$$

Example #3

- The result even extends to matrices (you can imagine stacking the columns of the $d \times x$ matrix into a giant vector of dimension $d \cdot k$)
- Proving these facts is beyond the scope of this course, but:
 - Matrix inversion is a continuous function (unless the matrix is singular)
 - Taking the square root of a positive definite matrix is also continuous
- So for example, if $\mathbf{X}_n \xrightarrow{P} \mathbf{A}$, then $\mathbf{X}_n^{-1} \xrightarrow{P} \mathbf{A}^{-1}$ provided that \mathbf{A} is not singular

Asymptotic equivalence

- Another very useful result is Slutsky's theorem, which we will present here in a rather general form
- Before we prove this result, we need to introduce the following lemma concerning asymptotically equivalent sequences
- Two sequences of random vectors x_n and y_n are said to be asymptotically equivalent if x_n − y_n → 0.
- Lemma (asymptotic equivalence): If $\mathbf{x}_n \xrightarrow{d} \mathbf{x}$ and $\mathbf{x}_n \mathbf{y}_n \xrightarrow{P} 0$, then $\mathbf{y}_n \xrightarrow{d} \mathbf{x}$.
- In words, the lemma is saying that asymptotically equivalent sequences have the same limiting distributions

Slutsky's theorem

- This lemma is necessary to prove Slutsky's theorem:
- Theorem (Slutsky): If $\mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{x}$ and $\mathbf{y}_n \stackrel{P}{\longrightarrow} \mathbf{a}$, where \mathbf{a} is a constant, then

$$\left[egin{array}{c} \mathbf{x}_n \ \mathbf{y}_n \end{array}
ight] \stackrel{\mathrm{d}}{\longrightarrow} \left[egin{array}{c} \mathbf{x} \ \mathbf{a} \end{array}
ight].$$

• This is perhaps not the form in which you are used to seeing Slutsky's theorem; the name "Slutsky's theorem" is widely used in an inconsistent manner to mean a number of similar results

Remarks

- This result along with the continuous mapping theorem implies all of the results that people often call "Slutsky's theorem"
- For example, we have the familiar $X_n + Y_n \xrightarrow{d} X + a$ and $X_n Y_n \xrightarrow{d} aX$ since additional and multiplication are continuous functions
- But we also have much more complex statements; for example, if x_1, x_2, \ldots is an iid sample with mean μ and nonsingular variance, then

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \mathbf{S}_n^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \stackrel{\mathrm{d}}{\longrightarrow} \chi_d^2$$

Delta method

- There is one last important type of transformation that Slutsky/CMT do not address: suppose we know the distribution of $\mathbf{x} \boldsymbol{\mu}$ and want to know the distribution of $g(\mathbf{x}) g(\boldsymbol{\mu})$
- This result is described by a theorem known as the delta method
- Theorem (Delta method): Let g : ℝ^d → ℝ^k such that ∇g is continuous in a neighborhood of μ ∈ ℝ^d and suppose √n(x_n − μ) ^d→ x. Then

$$\sqrt{n}(g(\mathbf{x}_n) - g(\boldsymbol{\mu})) \stackrel{\mathrm{d}}{\longrightarrow} \nabla g(\boldsymbol{\mu})^\top \mathbf{x}.$$

Normal distribution corollary

- This typically comes when dealing with functions of sample moments, which are multivariate normal by the CLT
- Corollary (Delta method): Let g : ℝ^d → ℝ^k such that ∇g is continuous in a neighborhood of μ ∈ ℝ^d and suppose √n(x_n − μ) → N(0, Σ). Then

$$\sqrt{n}(g(\mathbf{x}_n) - g(\boldsymbol{\mu})) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(\mathbf{0}, \nabla g(\boldsymbol{\mu})^\top \boldsymbol{\Sigma} \nabla g(\boldsymbol{\mu})).$$

• Our proof of the delta method illustrates an important point worth noting for the future: applying a Taylor series expansion requires conditions, but these conditions only need to be met with probability tending to 1 in order to establish convergence in distribution (asymptotic equivalence lemma)

Example

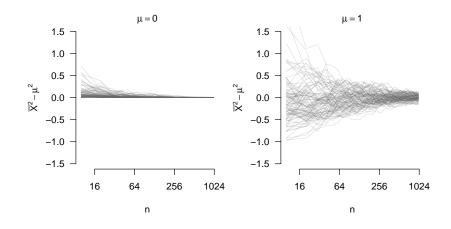
- While the delta method is certainly a useful result, it should be noted that the rate of convergence can vary widely depending on both μ and g
- For example, let's look at the function $g(\mu) = \mu^2$
- By the delta method and the CLT, we have

$$\sqrt{n}(\bar{x}^2 - \mu^2) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(0, 4\mu^2 \sigma^2)$$

• Note that this isn't even the same rate of convergence for all μ : $\bar{x}^2 - \mu^2$ is $O_p(1/\sqrt{n})$ in general, but $O_p(1/n)$ when $\mu = 0$

Rates of convergence

Example (cont'd)



Rates of convergence

Remarks

- The relevance to statistical practice is that a common use of the delta method is to derive approximate confidence intervals for unknown parameters
- However, not all transformations and not all values of the unknown parameters converge to normality equally fast
- In practice, this means that some transformations produce much more accurate confidence intervals than others, and it is not always obvious which transformation is best
- Furthermore, a confidence interval procedure can be good for some values of θ but poor at other values