The multivariate normal distribution

Patrick Breheny

September 7

Introduction

- Today we will introduce the multivariate normal distribution and attempt to discuss its properties in a fairly thorough manner
- The multivariate normal distribution is by far the most important multivariate distribution in statistics
- It's important for all the reasons that the one-dimensional Gaussian distribution is important, but even more so in higher dimensions because many distributions that are useful in one dimension do not easily extend to the multivariate case

Motivation

- In the univariate case, the family of normal distributions can be constructed from the standard normal distribution through the location-scale transformation $\mu+\sigma Z$, where $Z \sim \mathrm{~N}(0,1)$; the resulting random variable has a $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution
- A similar approach can be taken with the multivariate normal distribution, although some care needs to be taken with regard to whether the resulting variance is singular or not

Standard normal

- First, the easy case: if Z_{1}, \ldots, Z_{r} are mutually independent and each follows a standard normal distribution, the random vector \mathbf{z} is said to follow an r-variate standard normal distribution, denoted $\mathbf{z} \sim \mathrm{N}_{r}\left(\mathbf{0}, \mathbf{I}_{r}\right)$
- Remark: For multivariate normal distributions and identity matrices, I will usually leave off the subscript from now on when it is either unimportant or able to be figured out from context
- If $\mathbf{z} \sim \mathrm{N}_{r}(\mathbf{0}, \mathbf{I})$, its density is

$$
p(\mathbf{z})=(2 \pi)^{-r / 2} \exp \left\{-\frac{1}{2} \mathbf{z}^{\top} \mathbf{z}\right\}
$$

Multivariate possibilities

- Like the univariate case, we can construct multivariate distributions through linear combinations
- Before we define the multivariate normal distribution, however, note that there is no guarantee that the dimension remains the same in such a transformation:
- Suppose $z_{1}, z_{2}, z_{3} \stackrel{\Perp}{\sim} \mathrm{~N}(0,1)$
- The dimension could decrease: $x_{1}=z_{1}+2 z_{3}, x_{2}=-z_{2}$
- Or increase:

$$
\begin{aligned}
& x_{1}=z_{1}+2 z_{2} \\
& x_{2}=z_{1}-z_{2} \\
& x_{3}=z_{2}-z_{3} \\
& x_{4}=z_{1}+z_{2}+z_{3}
\end{aligned}
$$

Multivariate normal distribution

- Definition: Let \mathbf{x} be a $d \times 1$ random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, where $\operatorname{rank}(\boldsymbol{\Sigma})=r>0$. Let $\boldsymbol{\Gamma}$ be a $r \times d$ matrix such that $\boldsymbol{\Sigma}=\boldsymbol{\Gamma}^{\top} \boldsymbol{\Gamma}$. Then \mathbf{x} is said to have a d-variate normal distribution of rank r if its distribution is the same as that of the random vector $\boldsymbol{\mu}+\boldsymbol{\Gamma}^{\top} \mathbf{z}$, where $\mathbf{z} \sim \mathrm{N}_{r}(\mathbf{0}, \mathbf{I})$.
- This is typically denoted $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Density

- Suppose $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and that $\boldsymbol{\Sigma}$ is full rank; then \mathbf{x} has a density:
$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-d / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$,
where $|\boldsymbol{\Sigma}|$ denotes the determinant of $\boldsymbol{\Sigma}$
- We will not really concern ourselves with determinants and their properties in this course, although it is worth pointing out that if $\boldsymbol{\Sigma}$ is singular, then $|\boldsymbol{\Sigma}|=0$ and the above result does not hold (or even make sense)

Singular case

- In fact, if $\boldsymbol{\Sigma}$ is singular, then \mathbf{x} does not even have a density
- This is connected to our earlier discussion of the Lebesgue decomposition theorem: if $\boldsymbol{\Sigma}$ is singular, then the distribution of \mathbf{x} has a singular component (i.e., \mathbf{x} is not absolutely continuous)
- This is the reason why the definition of the MVN might seem somewhat roundabout - we can't just say that the random variable has a certain density, but must instead say that it has the same distribution as $\boldsymbol{\mu}+\boldsymbol{\Gamma}^{\top} \mathbf{z}$, where \mathbf{z} has a well-defined density

Moment generating function

- For this reason, when working with multivariate normal distributions or showing that some random variable y follows a multivariate normal distribution, it is often easier to work with moment generating functions or characteristic functions, which are well-defined even if $\boldsymbol{\Sigma}$ is singular
- If $\mathbf{x} \sim N_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then its moment generating function is

$$
m(\mathbf{t})=\exp \left\{\mathbf{t}^{\top} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right\},
$$

where $\mathbf{t} \in \mathbb{R}^{d}$

- We'll come back to its characteristic function in a future lecture

Partitioned matrices

- The concept of partitioning a matrix will come up often
- The idea of a partitioned matrix is to think of a large matrix as a collection of smaller submatrices:

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 2 & 7 \\
1 & 5 & 6 & 2 \\
3 & 3 & 4 & 5 \\
3 & 3 & 6 & 7
\end{array}\right]
$$

can be partitioned into four 2×2 blocks

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right], \text { where } \mathbf{A}_{11}=\left[\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right], \mathbf{A}_{12}=\left[\begin{array}{ll}
2 & 7 \\
6 & 2
\end{array}\right], \ldots
$$

Transposing partitioned matrices

- The transpose of a partitioned matrix is

$$
\mathbf{A}^{\top}=\left[\begin{array}{ll}
\mathbf{A}_{11}^{\top} & \mathbf{A}_{21}^{\top} \\
\mathbf{A}_{12}^{\top} & \mathbf{A}_{22}^{\top}
\end{array}\right]
$$

- Note that if \mathbf{A} is symmetric, as in the case of a covariance matrix or matrix of second derivatives, then

$$
\mathbf{A}_{12}^{\top}=\mathbf{A}_{21}
$$

Independence

- Before moving on, let us note that there is a connection between covariance and independence in the multivariate normal distribution
- Theorem: Suppose $\mathbf{x} \sim N_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. If $\mathbf{x}=\left[\mathbf{x}_{1} \mathbf{x}_{2}\right]^{\top}$ and the corresponding off-diagonal of $\boldsymbol{\Sigma}_{12}$ is zero, then \mathbf{x}_{1} and \mathbf{x}_{2} are independent.
- In particular, if $\boldsymbol{\Sigma}$ is a diagonal matrix, then x_{1}, \ldots, x_{n} are mutually independent

Independence (caution)

- It is worth pointing out a common mistake here: $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0 \Longrightarrow X_{1} \Perp X_{2}$ only if X_{1} and X_{2} are multivariate normal
- For example, suppose $X \sim N(0,1)$ and $Y= \pm X$, each with probability $\frac{1}{2}$
- X and Y are both normally distributed, and $\operatorname{Cov}(X, Y)=0$, but they are clearly not independent

Main result

- A very important property of the multivariate normal distribution is that its linear combinations are also normally distributed
- Theorem: Let \mathbf{b} be a $k \times 1$ vector of constants, \mathbf{B} a $k \times d$ matrix of constants, and $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$
\mathbf{b}+\mathbf{B} \mathbf{x} \sim \mathrm{N}_{k}\left(\mathbf{B} \boldsymbol{\mu}+\mathbf{b}, \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{\top}\right)
$$

Corollary

- A useful corollary of this result is that we can always "standardize" a variable with an MVN distribution
- Let's consider the full-rank case first (i.e., $\boldsymbol{\Sigma}$ is nonsingular and positive definite, and so is $\boldsymbol{\Sigma}^{-1}$)
- Corollary: Let $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$
\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu}) \sim \mathrm{N}_{d}(\mathbf{0}, \mathbf{I})
$$

where $\boldsymbol{\Sigma}^{-1 / 2}$ is the square root of $\boldsymbol{\Sigma}^{-1}$.

Corollary: Low rank case

- If $\boldsymbol{\Sigma}$ is singular, then $\boldsymbol{\Sigma}^{-1 / 2}$ does not exist, although we can still standardize the distribution
- Corollary: Let $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is rank r with $\boldsymbol{\Gamma}^{\top} \boldsymbol{\Gamma}=\boldsymbol{\Sigma}$. Then

$$
\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\top}\right)^{-1} \boldsymbol{\Gamma}(\mathbf{x}-\boldsymbol{\mu}) \sim \mathrm{N}_{r}(\mathbf{0}, \mathbf{I})
$$

Main result

- In the univariate case, if $Z \sim \mathrm{~N}(0,1)$, then Z^{2} follows a distribution known as the χ^{2} distribution
- Furthermore, if Z_{1}, \ldots, Z_{n} are mutually independent and each $Z_{i} \sim \mathrm{~N}(0,1)$, then $\sum_{i} Z_{i}^{2} \sim \chi_{n}^{2}$, where χ_{n}^{2} denotes the χ^{2} distribution with n degrees of freedom
- Thus, it is a straightforward consequence of our previous corollaries that if $\mathbf{x} \sim N_{d}(\mathbf{0}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Sigma}$ is nonsingular,

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} \sim \chi_{d}^{2}
$$

Main result (low rank)

- Similarly, it is always the case that if $\mathbf{x} \sim \mathrm{N}_{d}(\mathbf{0}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}=\boldsymbol{\Gamma}^{\top} \boldsymbol{\Gamma}$, then

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-} \mathbf{x} \sim \chi_{r}^{2}
$$

where r is the rank of Σ and

$$
\boldsymbol{\Sigma}^{-}=\boldsymbol{\Gamma}^{\top}\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\top}\right)^{-1}\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\top}\right)^{-1} \boldsymbol{\Gamma}
$$

- As discussed in our review last time, $\boldsymbol{\Sigma}^{-}$is a quantity known as a generalized inverse, which you'll learn more about in the linear models course

Non-central chi square distribution

- If $\boldsymbol{\mu} \neq \mathbf{0}$, then the quadratic form follows something called a non-central χ^{2} distribution
- If $Z_{1}, \ldots, Z_{n} \stackrel{\Perp}{\sim} N\left(\mu_{i}, 1\right)$, then the distribution of $\sum_{i} Z_{i}^{2}$ is known as the noncentral χ_{n}^{2} distribution with noncentrality parameter $\sum_{i} \mu_{i}^{2}$
- Thus, if $\mathbf{x} \sim \mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we have

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} \sim \chi_{d}^{2}\left(\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)
$$

or

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-} \mathbf{x} \sim \chi_{r}^{2}\left(\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-} \boldsymbol{\mu}\right)
$$

if $\boldsymbol{\Sigma}$ is singular

Marginal distributions

- Finally, let us consider some results related to partitions of the multivariate normal distribution:

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

- Conveniently, the marginal distributions are exactly what you would intuitively think they should be:

$$
\mathbf{x}_{1} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)
$$

Conditional

- A more complicated question: what is the distribution of \mathbf{x}_{1} given x_{2} ?
- This gets messy if $\boldsymbol{\Sigma}$ is singular, but if $\boldsymbol{\Sigma}$ is full rank, then

$$
\mathbf{x}_{1} \mid \mathbf{x}_{2} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

- As mentioned earlier, note that if $\boldsymbol{\Sigma}_{12}=\mathbf{0}$, then \mathbf{x}_{1} and \mathbf{x}_{2} are independent and $\mathbf{x}_{1} \mid \mathbf{x}_{2} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$;

Schur complement

- The quantity $\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$ is known in linear algebra as the Schur complement; it comes up all the time in statistics and we will see it repeatedly in this course
- It is the inverse of the $(1,1)$ block of $\boldsymbol{\Sigma}^{-1}$; more explicitly, letting $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$,

$$
\boldsymbol{\Theta}_{11}^{-1}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}
$$

- Conceptually, it represents the reduction in the variability of \mathbf{x}_{1} that we achieve by learning \mathbf{x}_{2} (or equivalently, the increase in our uncertainty about \mathbf{x}_{1} if we don't know \mathbf{x}_{2})

Precision matrix

- The inverse of the covariance matrix, $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$, is known as the precision matrix and is a rather interesting quantity in its own right
- In fact, many statistical procedures are more concerned with estimating $\boldsymbol{\Theta}$ than $\boldsymbol{\Sigma}$
- One key reason for this is that Θ encodes conditional independence relationships that are often of interest in learning the structure of \mathbf{x} in terms of which how variables are related to each other

Conditional independence result

- Suppose we partition \mathbf{x} into \mathbf{x}_{1}, containing two variables of interest, and x_{2} containing the remaining variables
- Then by the results we've obtained already, if $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{x}_{1} \mid \mathbf{x}_{2}$ is multivariate normal with covariance matrix $\boldsymbol{\Theta}_{11}^{-1}$
- Thus, if any off-diagonal element of Θ is zero, then the corresponding variables are conditionally independent given the remaining variables
- This is of interest in many statistical problems

Example

- For example, suppose $X \rightarrow Y \rightarrow Z$; we could simulate this with, for example,

```
x <- rnorm(n)
y <- x + rnorm(n)
z <- y + rnorm(n)
```

- Note that $\hat{\boldsymbol{\Sigma}}_{x z}$ is not close to zero at all; X and Z are not independent and are, in fact, rather highly correlated
- However, $\hat{\boldsymbol{\Theta}}_{x z} \approx 0 ; X$ and Z are conditionally independent given Y

Application

- One application of this idea is in learning gene regulatory networks
- Suppose the expression levels of various genes follow a multivariate normal distribution (at least approximately)
- Learning which elements of Θ are nonzero corresponds to learning which pairs of genes have a direct relationship with one another, as opposed to being merely correlated through the effects of other genes that affect them both

