Marginal likelihood

Patrick Breheny

November 16

Introduction

- In our previous lecture, we introduced the idea of conditioning in order to obtain a distribution free of nuisance parameters
- Today, our goal will also be to create a distribution free of nuisance parameters, although this time, we will be accomplishing that goal by (in one way or another) constructing a marginal distribution without nuisance parameters

Definition

- As in the previous lecture, suppose we can transform the data x into v and w
- We will again be factoring the likelihood, only this time it will be the marginal distribution that is free of nuisance parameters:

$$
p(x \mid \boldsymbol{\theta}, \boldsymbol{\eta})=p(v \mid \boldsymbol{\theta}) p(w \mid v, \boldsymbol{\theta}, \boldsymbol{\eta})
$$

the first term, $L(\boldsymbol{\theta})=p(v \mid \boldsymbol{\theta})$, is known as the marginal likelihood

- Note that this term is free of nuisance parameters and that, like the conditional likelihood, is a true likelihood, corresponding to an actual distribution of observed data

Example: Normal distribution

- As an example, suppose $X_{i} \stackrel{\mathrm{iid}}{\sim} N\left(\mu, \sigma^{2}\right)$
- We have already seen that the (profile) MLE, $\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$, is biased
- Consider instead the transformation

$$
s^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

- From ordinary normal distribution theory, we know that

$$
(n-1) s^{2} \sim \sigma^{2} \chi_{n-1}^{2}
$$

Example: Normal distribution (cont'd)

- This marginal likelihood is

$$
\ell\left(\sigma^{2}\right)=-\frac{n-1}{2} \log \sigma^{2}-\frac{(n-1) s^{2}}{2 \sigma^{2}}
$$

thus $\hat{\sigma}^{2}=s^{2}$, an unbiased estimate

- Note that $\bar{x} \sim \mathrm{~N}\left(\mu, \sigma^{2} / n\right)$ and $\bar{x} \Perp s^{2}$, so in terms of likelihood, we have

$$
L\left(\mu, \sigma^{2}\right)=L\left(\mu, \sigma^{2} \mid \bar{x}\right) L\left(\sigma^{2} \mid s^{2}\right)
$$

- As with conditional likelihood, there is the possibility that we are losing information by ignoring the first part of the likelihood

Remarks

- In this scenario, are we losing information? Does \bar{x} contain any information about σ^{2} ?
- Certainly, if we had a repeated sample with several means, this would tell us something about σ^{2}
- With a single sample, however, it is hard to see how \bar{x} could tell us anything about σ^{2}

Neyman-Scott problem

- As another example, consider the Neyman-Scott problem: $Y_{i 1}, Y_{i 2} \sim \mathrm{~N}\left(\mu_{i}, \sigma^{2}\right)$
- If we apply the transformation

$$
v_{i}=\left(y_{i 1}-y_{i 2}\right) / \sqrt{2}
$$

then $v_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$, a marginal distribution that is free of the nuisance parameters μ_{i}

- The marginal log-likelihood is therefore

$$
\ell\left(\sigma^{2}\right) \propto-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i} v_{i}^{2}
$$

Marginal likelihood MLE

- The marginal likelihood therefore yields the estimate

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i} v_{i}^{2}
$$

- This is equal to RSS/ n, the unbiased estimator from a classical ANOVA analysis
- Again, recall that the (profile) MLE was $\operatorname{RSS} /(2 n)$, not only biased but inconsistent

Illustration

Information loss

- As the figure indicates, we are certainly losing information (compared to the oracle) by not knowing the μ_{i} parameters; indeed, the information loss is 50%
- A more fair comparison can be made between this marginal likelihood and a mixed model (more on these later) assuming that $\mu_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \tau^{2}\right)$
- In this case, it can be shown that the proportion of information lost is

$$
\frac{1}{1+\left(1+2 \tau^{2} / \sigma^{2}\right)^{2}}
$$

when $\tau^{2}=\sigma^{2}$, this loss is 10%

REML

- Lastly, suppose we are fitting an ordinary linear regression model; as we have seen, the MLE for $\sigma^{2}, \mathrm{RSS} / n$, is biased
- An alternative approach using marginal likelihood is to apply the transformation

$$
\mathbf{v}=\left[\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right] \mathbf{y}
$$

- The transformed data \mathbf{v} has distribution $\mathrm{N}\left(\mathbf{0}, \sigma^{2}\left[\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right]\right)$, which is
- Free of β
- Yields the marginal likelihood MLE

$$
\hat{\sigma}^{2}=\operatorname{RSS} /(n-p)
$$

- This is known as "restricted maximum likelihood" (REML)

Marginalization as a general technique

- Although possible to apply marginal likelihood in standard settings (as we have just done), its most common use is in "mixed" models
- Deriving marginal distributions from joint distributions is of course a standard tool in statistics:

$$
p(x)=\int p(x, y) d y
$$

- What we are attempting to do here, however, is to eliminate nuisance parameters by marginalizing

Marginalization and Bayesian statistics

- As we remarked in an earlier lecture, if the nuisance parameters have a distribution (as they do in Bayesian statistics), then standard tools apply
- Again, this is a major advantage of the Bayesian approach to inference . . . can it be applied outside of purely Bayesian frameworks?
- Indeed it can, if we are willing to treat the nuisance parameters not as parameters in the traditional frequentist sense, but as unobserved random variables

Mixed models

- In doing so, these unobserved random variables must be supplied with a distribution
- Obviously, this adds a layer of assumptions to our model, but without it, there is no way to integrate out the nuisance parameters
- Such a model, in which certain parameters are treated as unobserved random variables and others as unknown constants, is known as a "mixed" model

Motivating example

- Mixed models will be covered much more comprehensively in longitudinal data analysis (BIOS 7310), but we'll take a brief look at them here in order to see how marginal likelihood can be applied in general modeling settings
- Let's consider the model

$$
y_{i j} \stackrel{\Perp}{\sim} \mathrm{~N}\left(\alpha_{i}+x_{i j} \beta, \sigma^{2}\right),
$$

and assume we are interested in estimating both β and σ

- Such a model might arise if there were repeated measurements on a subject, within a family, etc.
- As in the Neyman-Scott problem, the number of parameters is increasing with the sample size, which poses a challenge to maximum likelihood

Marginal likelihood

- How can we proceed with a marginal likelihood approach?
- In the case of linear models, we can use known properties of the multivariate normal distribution to work everything out in closed form
- Specifically, if we are willing to assume that $\alpha_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(\mu, \tau^{2}\right)$, with $\left\{\alpha_{i}\right\}$ and the residual errors mutually independent, then we can write our model as

$$
y_{i j}=\mu+x_{i j} \beta+\varepsilon_{i j},
$$

where $\varepsilon_{i j}$ has mean zero and variance $\sigma^{2}+\tau^{2}$, as it incorporates both the between-group variability (from α_{i}) and the within-group variability

Correlation structure

- The $\varepsilon_{i j}$ terms, however, are not independent, as the α_{i} term is shared across multiple observations
- This gives rise to the following correlation structure (assuming consecutive observations are paired):

$$
\mathbb{V} \varepsilon=\left[\begin{array}{ccccc}
\sigma^{2}+\tau^{2} & \tau^{2} & 0 & 0 & \cdots \\
\tau^{2} & \sigma^{2}+\tau^{2} & 0 & 0 & \cdots \\
0 & 0 & \sigma^{2}+\tau^{2} & \tau^{2} & \cdots \\
0 & 0 & \tau^{2} & \sigma^{2}+\tau^{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Marginally, we have $\mathbf{y} \sim \mathrm{N}(\mu+\mathbf{x} \beta, \mathbf{V})$, where $\mathbf{V}=\mathbb{V} \boldsymbol{\varepsilon}$

Estimation

- As we've seen in our homework assignment, however, we can estimate β in closed form regardless of what structure the variance has:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{y}
$$

where $\mathbf{W}=\mathbf{V}^{-1}$

- This, of course, assumes that \mathbf{V} is known
- In our case, the structure of \mathbf{V} is known (or at least assumed), but the values of σ^{2} and τ^{2} are not
- Thus, in order to fit this model, we will need to proceed in an iterative fashion, updating $\boldsymbol{\beta}$ given τ^{2} and σ^{2}, then updating τ^{2} and σ^{2} given β, and so on

Competitors

- So, how well does this approach work?
- Let's introduce some competing ideas for how to analyze this data
- Naïve: Simply regress y on \mathbf{x}, don't even worry about α_{i}
- Profile: Ordinary least squares with all $n+2$ parameters $\left(\left\{\alpha_{i}\right\}_{i=1}^{n}, \beta\right.$, and $\left.\sigma\right)$
- Oracle: Gets to use the true $\left\{\alpha_{i}\right\}_{i=1}^{n}$ values
- Differencing: Analyze $v_{i}=y_{i 1}-y_{i 2}$, which causes the α_{i} term to cancel; note that this is also a marginal likelihood approach, but doesn't make any distributional assumptions about $\left\{\alpha_{i}\right\}_{i=1}^{n}$ (note that this is not so easily extended beyond the paired setting)

Results

I simulated $n=100$ pairs of observations, with $\sigma^{2}=\tau^{2}=\beta=1$:

	$\widehat{\boldsymbol{\beta}}$	$\mathrm{SE}(\widehat{\boldsymbol{\beta}})$	$\hat{\sigma}^{2}$
Oracle	1.00	0.23	0.93
Marginal	0.89	0.29	0.98
Differencing	1.14	0.34	0.97
Profile	1.14	0.34	0.48
Naïve	0.66	0.33	1.89

Remarks

- In terms of estimating $\boldsymbol{\beta}$, all methods produce reasonable estimates (the naïve approach looks bad in this particular simulation, but it isn't biased)
- However, the marginal likelihood mixed model results in the most accurate (lowest SE) estimate, except for the oracle
- As we have seen, the profile likelihood approach substantially underestimates σ^{2}
- As we might expect, the naïve approach substantially overestimates σ^{2}; all other methods produce reasonable estimates

Changing the data generating process

- This looks very good for marginal likelihood - and indeed, it is a very effective and widely used approach in situations like this
- However, it is important to keep in mind that it comes at the expense of added assumptions that may or may not be true
- For example, we have assumed that the distribution of α_{i} is independent of $x_{i j}$
- However, what if $x_{i j} \stackrel{\Perp}{\sim} \mathrm{~N}\left(\alpha_{i}, 1\right)$?

Results, part 2

In this case, the mixed model's assumptions are wrong and the resulting coefficient estimate is biased (here, $n=1,000$):

	$\widehat{\boldsymbol{\beta}}$	$\mathrm{SE}(\widehat{\boldsymbol{\beta}})$	$\hat{\sigma}^{2}$
Oracle	1.00	0.02	0.98
Marginal	1.42	0.02	1.08
Differencing	1.04	0.03	0.94
Profile	1.04	0.03	0.47
Naïve	1.49	0.02	1.44

Introduction to nonlinear mixed models

- This same idea can be extended to nonlinear models as well
- The big difference, however, is that without the nice properties of the multivariate normal distribution, we cannot simply derive the marginal distribution in closed form
- Instead, we will have to rely on a numeric algorithm to approximate the integral

Non-quadrature approaches

- You should be somewhat familiar with this idea from Bayesian methods, as numeric integration is ubiquitous in Bayesian analysis
- Monte Carlo approaches are indeed one way to integrate out the random effects
- Another approach is the trapezoid rule, approximating the integral by breaking it up into a large number of little trapezoids

Gaussian quadrature

- However, a more widely used method for mixed models is something called Gaussian quadrature
- The basic idea of Gaussian quadrature is to approximate an integral with a weighted sum:

$$
\int_{a}^{b} f(x) p(x) d x \approx \sum_{k=1}^{K} w_{k} f\left(z_{k}\right)
$$

- The cleverness of Gaussian quadrature is to choose the weights $\left\{w_{k}\right\}$ and focal points (or "abscissas") $\left\{z_{k}\right\}$ so that this approximation is as accurate as possible

Brief theory of quadrature

- The theory of Gaussian quadrature, while rather elegant, is beyond the scope of this course
- Nevertheless, l'll share the result of one theorem (without proof) so that you can get a sense of how well it works
- Theorem: For any absolutely continuous distribution, there exist positive weights $\left\{w_{k}\right\}_{k=1}^{K}$ and points $\left\{z_{k}\right\}_{k=1}^{K}$ such that the quadrature formula is exact whenever f is a polynomial of degree $2 K+1$ or lower.

Computation of points and weights

- Solving for these points and weights, of course, is not trivial, but for common probability distributions $p(x)$, the problem has already been solved by long-dead brilliant mathematicians
- Gauss-Legendre quadrature gives the points and weights for the uniform distribution, Gauss-Laguerre for the gamma distributions, Gauss-Jacobi the beta distribution, and so on
- The most widely used in statistics are the Gauss-Hermite polynomials, which correspond to the normal distribution
- Several R packages provide these points and weights; I tend to use GHrule from the lme4 package

Example: Variance of the median

- If $X_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}(0,1)$, with n odd, the sample median has density

$$
p(x)=\frac{n!}{m!m!} \Phi(x)^{m}\{1-\Phi(x)\}^{m} \phi(x)
$$

where $m=(n-1) / 2$

- By symmetry, the expected value of the median is zero, but the variance is not easy to calculate
- This is therefore a natural candidate for a numerical method such as quadrature:

$$
\begin{aligned}
\mathbb{V} X_{(m+1)} & =\int x^{2} p(x) d x=\int f(x) \phi(x) d x \\
& \approx \sum_{k=1}^{K} w_{k} f\left(x_{k}\right)
\end{aligned}
$$

Results

- We could also approximate this result with Monte Carlo integration (simulate a sample of normal variables, take the median, repeat thousands of times, and calculate the variance) or with asymptotic theory, which says that the variance should be about $\pi /(2 n)$
- Results for $n=11$:

Variance

Monte Carlo $(N=100,000)$	0.1368
Asymptotic	0.1428
Gauss-Hermite $(K=20)$	0.1476
Gauss-Hermite $(K=100)$	0.1372

A mixed effects logistic regression

- To see how this works in statistical modeling, let's consider the binary analog of our earlier model:

$$
\log \frac{\pi_{i j}}{1-\pi_{i j}}=\mu+x_{i j} \beta+\alpha_{i}
$$

where again we will assume that $\alpha i \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \tau^{2}\right)$

- Letting $\alpha_{i}=\tau w_{i}, w_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}(0,1)$, the marginal likelihood is

$$
\begin{aligned}
L\left(\beta, \mu, \tau^{2}\right) & =\prod_{i=1}^{n} \int\left\{\prod_{j=1}^{m_{i}} p\left(y_{i j} \mid x_{i j}, \alpha_{i}, \beta, \mu\right)\right\} p\left(\alpha_{i} \mid \tau^{2}\right) d \alpha_{i} \\
& =\prod_{i=1}^{n} \int \exp \left\{\sum_{j=1}^{m_{i}} \log p\left(y_{i j} \mid x_{i j}, \tau w_{i}, \beta, \mu\right)\right\} \phi\left(w_{i}\right) d w_{i}
\end{aligned}
$$

Approximate marginal likelihood

- Having now written the integral in the form $\int f(x) \phi(x) d x$, we can apply Gauss-Hermite quadrature:

$$
L\left(\beta, \mu, \tau^{2}\right) \approx \prod_{i=1}^{n} \sum_{k=1}^{K} w_{k} \exp \left\{\sum_{j=1}^{m_{i}} \log p\left(y_{i j} \mid x_{i j}, \tau z_{k}, \beta, \mu\right)\right\}
$$

- We now have the likelihood in a form that, while not necessarily simple, is at least manageable in terms of taking gradients to find the score and information
- This method is implemented in various software packages such as glmer in R and PROC GLIMMIX in SAS, although there are a variety of other numeric approximations available

Simulation case study

- As we did with the linear models, let's compare this marginal likelihood approach with some other plausible ways of analyzing this data
- Naïve: As before, ignore the α_{i} effects completely and just fit a standard logistic regression
- Profile: As before, fit a standard logistic regression with $n+1$ parameters
- Conditional: The method we derived in the previous lecture, where we form a conditional likelihood from pairs such that $y_{i 1}+y_{i 2}=1$

Results

Simulation case study results ($n=1,000$):

	$\widehat{\beta}$	SE
Naïve	0.82	0.05
Profile	2.17	0.16
Conditional	1.09	0.11
Marginal	0.93	0.07

As before, the data were simulated with $\beta=\tau^{2}=1$

Remarks

- As we would expect from our earlier analytical look at this problem, the profile MLE is biased upwards, while the naïve MLE is biased downward (somewhat)
- The conditional and marginal likelihood approaches both look reasonable, although as before, the marginal likelihood mixed model has a somewhat smaller SE (primarily due to making stronger assumptions, of course)

